-
1
-
-
84901665086
-
Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
-
Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 6555-6569
-
-
Morales-Guio, C.G.1
Stern, L.A.2
Hu, X.L.3
-
2
-
-
84934916291
-
Noble metal-free hydrogen evolution catalysts for water splitting
-
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 5148-5180
-
-
Zou, X.X.1
Zhang, Y.2
-
3
-
-
84927949007
-
Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
-
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 2060-2086
-
-
Jiao, Y.1
Zheng, Y.2
Jaroniec, M.3
Qiao, S.Z.4
-
4
-
-
84907983567
-
Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
-
Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3519-3542
-
-
Faber, M.S.1
Jin, S.2
-
5
-
-
33750453016
-
Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
-
Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.
-
(2006)
Nat. Mater.
, vol.5
, pp. 909-913
-
-
Greeley, J.1
Jaramillo, T.F.2
Bonde, J.3
Chorkendorff, I.4
Nørskov, J.K.5
-
6
-
-
78449289476
-
Solar water splitting cells
-
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.
-
(2010)
Chem. Rev.
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.X.5
Santori, E.A.6
Lewis, N.S.7
-
7
-
-
34250703763
-
Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode
-
Skúlason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jónsson, H.; Nørskov, J. K. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 2007, 9, 3241–3250.
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 3241-3250
-
-
Skúlason, E.1
Karlberg, G.S.2
Rossmeisl, J.3
Bligaard, T.4
Greeley, J.5
Jónsson, H.6
Nørskov, J.K.7
-
9
-
-
84954467849
-
4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting
-
4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 2015, 127, 12538–12542.
-
(2015)
Angew. Chem., Int. Ed.
, vol.127
, pp. 12538-12542
-
-
Ledendecker, M.1
Krick Calderón, S.2
Papp, C.3
Steinrück, H.P.4
Antonietti, M.5
Shalom, M.6
-
10
-
-
84933584555
-
Metal-free catalysts for oxygen reduction reaction
-
Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H.-J.; Baek, J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.
-
(2015)
Chem. Rev.
, vol.115
, pp. 4823-4892
-
-
Dai, L.M.1
Xue, Y.H.2
Qu, L.T.3
Choi, H.-J.4
Baek, J.-B.5
-
11
-
-
84954438544
-
Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting
-
Zhu, W. X.; Yue, X. Y.; Zhang, W. T.; Yu, S. X.; Zhang, Y. H.; Wang, J.; Wang, J. L. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489.
-
(2016)
Chem. Commun.
, vol.52
, pp. 1486-1489
-
-
Zhu, W.X.1
Yue, X.Y.2
Zhang, W.T.3
Yu, S.X.4
Zhang, Y.H.5
Wang, J.6
Wang, J.L.7
-
12
-
-
84896521395
-
Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting
-
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7787-7812
-
-
Ran, J.R.1
Zhang, J.2
Yu, J.G.3
Jaroniec, M.4
Qiao, S.Z.5
-
13
-
-
84929603274
-
Hydrogen evolution catalyzed by cobalt diimine–dioxime complexes
-
Kaeffer, N.; Chavarot-Kerlidou, M.; Artero, V. Hydrogen evolution catalyzed by cobalt diimine–dioxime complexes. Acc. Chem. Res. 2015, 48, 1286–1295.
-
(2015)
Acc. Chem. Res.
, vol.48
, pp. 1286-1295
-
-
Kaeffer, N.1
Chavarot-Kerlidou, M.2
Artero, V.3
-
14
-
-
80053312320
-
Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts
-
Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3878-3888
-
-
Merki, D.1
Hu, X.L.2
-
15
-
-
84962209982
-
4@C nanoparticles for water splitting and all-solid-state supercapacitor
-
4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res. 2016, 9, 1300–1309.
-
(2016)
Nano Res.
, vol.9
, pp. 1300-1309
-
-
Sun, C.C.1
Yang, J.2
Dai, Z.Y.3
Wang, X.W.4
Zhang, Y.F.5
Li, L.Q.6
Chen, P.7
Huang, W.8
Dong, X.C.9
-
16
-
-
84928746720
-
A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting
-
Zhu, J. X.; Sakaushi, K.; Clavel, G.; Shalom, M.; Antonietti, M.; Fellinger, T.-P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 2015, 137, 5480–5485.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 5480-5485
-
-
Zhu, J.X.1
Sakaushi, K.2
Clavel, G.3
Shalom, M.4
Antonietti, M.5
Fellinger, T.-P.6
-
17
-
-
84887955799
-
First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction
-
Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3553-3558
-
-
Kong, D.S.1
Cha, J.J.2
Wang, H.T.3
Lee, H.R.4
Cui, Y.5
-
18
-
-
83255187152
-
A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
-
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.
-
(2011)
Science
, vol.334
, pp. 1383-1385
-
-
Suntivich, J.1
May, K.J.2
Gasteiger, H.A.3
Goodenough, J.B.4
Shao-Horn, Y.5
-
19
-
-
84908636961
-
2 nanosheets for water oxidation
-
2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 15670-15675
-
-
Liu, Y.W.1
Cheng, H.2
Lyu, M.J.3
Fan, S.J.4
Liu, Q.H.5
Zhang, W.S.6
Zhi, Y.D.7
Wang, C.M.8
Xiao, C.9
Wei, S.Q.10
-
20
-
-
84899894614
-
Metal–organic framework composites
-
Zhu, Q. L.; Xu, Q. Metal–organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 5468-5512
-
-
Zhu, Q.L.1
Xu, Q.2
-
21
-
-
0033581908
-
Design and synthesis of an exceptionally stable and highly porous metal–organic framework
-
Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 1999, 402, 276–279.
-
(1999)
Nature
, vol.402
, pp. 276-279
-
-
Li, H.L.1
Eddaoudi, M.2
O'Keeffe, M.3
Yaghi, O.M.4
-
22
-
-
65149084322
-
Hydrogen storage in metal–organic frameworks
-
Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 1294-1314
-
-
Murray, L.J.1
Dincă, M.2
Long, J.R.3
-
23
-
-
65349147078
-
Metal–organic framework materials as catalysts
-
Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 1450-1459
-
-
Lee, J.1
Farha, O.K.2
Roberts, J.3
Scheidt, K.A.4
Nguyen, S.T.5
Hupp, J.T.6
-
24
-
-
79551698797
-
Synergistic catalysis of Au@ Ag core−shell nanoparticles stabilized on metal−organic framework
-
Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@ Ag core−shell nanoparticles stabilized on metal−organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 1304-1306
-
-
Jiang, H.-L.1
Akita, T.2
Ishida, T.3
Haruta, M.4
Xu, Q.5
-
25
-
-
84899847847
-
Luminescent metal–organic frameworks for chemical sensing and explosive detection
-
Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 5815-5840
-
-
Hu, Z.C.1
Deibert, B.J.2
Li, J.3
-
26
-
-
84901022720
-
Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds
-
Zhang, M.; Feng, G. X.; Song, Z. G.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D. Q.; Tan, T. T. Y.; Guo, Z. G.; Hu, Z. G.; Tang, B. Z. et al. Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 7241-7244
-
-
Zhang, M.1
Feng, G.X.2
Song, Z.G.3
Zhou, Y.-P.4
Chao, H.-Y.5
Yuan, D.Q.6
Tan, T.T.Y.7
Guo, Z.G.8
Hu, Z.G.9
Tang, B.Z.10
-
27
-
-
84944260746
-
Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal–organic frameworks and nanoscale coordination polymers
-
He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.
-
(2015)
Chem. Rev.
, vol.115
, pp. 11079-11108
-
-
He, C.B.1
Liu, D.M.2
Lin, W.B.3
-
28
-
-
84936866806
-
Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion
-
Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 1837-1866
-
-
Xia, W.1
Mahmood, A.2
Zou, R.Q.3
Xu, Q.4
-
29
-
-
84878871031
-
Metal–organic frameworks as platforms for clean energy
-
Li, S.-L.; Xu, Q. Metal–organic frameworks as platforms for clean energy. Energy Environ. Sci. 2013, 6, 1656–1683.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1656-1683
-
-
Li, S.-L.1
Xu, Q.2
-
30
-
-
84867769396
-
3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties
-
3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 17388-17391
-
-
Zhang, L.1
Wu, H.B.2
Madhavi, S.3
Hng, H.H.4
Lou, X.W.5
-
31
-
-
84920193726
-
4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting
-
4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 2015, 12, 1–8.
-
(2015)
Nano Energy
, vol.12
, pp. 1-8
-
-
Hou, Y.1
Li, J.Y.2
Wen, Z.H.3
Cui, S.M.4
Yuan, C.5
Chen, J.H.6
-
32
-
-
84922554539
-
An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting
-
Hou, Y.; Wen, Z. H.; Cui, S. M.; Ci, S. Q.; Mao, S.; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 872-882
-
-
Hou, Y.1
Wen, Z.H.2
Cui, S.M.3
Ci, S.Q.4
Mao, S.5
Chen, J.H.6
-
33
-
-
84924787204
-
Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production
-
Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512–6519.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6512-6519
-
-
Wu, H.B.1
Xia, B.Y.2
Yu, L.3
Yu, X.Y.4
Lou, X.W.5
-
34
-
-
84947921287
-
High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks
-
You, B.; Jiang, N.; Sheng, M. L.; Gul, S.; Yano, J.; Sun, Y. J. High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chem. Mater. 2015, 27, 7636–7642.
-
(2015)
Chem. Mater.
, vol.27
, pp. 7636-7642
-
-
You, B.1
Jiang, N.2
Sheng, M.L.3
Gul, S.4
Yano, J.5
Sun, Y.J.6
-
35
-
-
84862302894
-
4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries
-
4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.
-
(2012)
Nano Lett.
, vol.12
, pp. 3005-3011
-
-
Liu, B.1
Zhang, J.2
Wang, X.F.3
Chen, G.4
Chen, D.5
Zhou, C.W.6
Shen, G.Z.7
-
36
-
-
84926637560
-
MOFdirected templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithiumion battery anodes
-
Sun, C. C.; Yang, J.; Rui, X. H.; Zhang, W. N.; Yan, Q. Y.; Chen, P.; Huo, F. W.; Huang, W.; Dong, X. C. MOFdirected templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithiumion battery anodes. J. Mater. Chem. A 2015, 3, 8483–8488.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 8483-8488
-
-
Sun, C.C.1
Yang, J.2
Rui, X.H.3
Zhang, W.N.4
Yan, Q.Y.5
Chen, P.6
Huo, F.W.7
Huang, W.8
Dong, X.C.9
-
37
-
-
78651393924
-
Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors
-
Shi, Q.; Chen, Z. F.; Song, Z. W.; Li, J. P.; Dong, J. X. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem., Int. Ed. 2011, 50, 672–675.
-
(2011)
Angew. Chem., Int. Ed.
, vol.50
, pp. 672-675
-
-
Shi, Q.1
Chen, Z.F.2
Song, Z.W.3
Li, J.P.4
Dong, J.X.5
-
40
-
-
84882331328
-
Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen
-
Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 8546-8550
-
-
Xu, Y.F.1
Gao, M.R.2
Zheng, Y.R.3
Jiang, J.4
Yu, S.H.5
-
41
-
-
0019024272
-
X-ray photoelectron spectra of 3d transition metal pyrites
-
Van der Heide, H.; Hemmel, R.; Van Bruggen, C. F.; Haas, C. X-ray photoelectron spectra of 3d transition metal pyrites. J. Solid State Chem. 1980, 33, 17–25.
-
(1980)
J. Solid State Chem.
, vol.33
, pp. 17-25
-
-
Van der Heide, H.1
Hemmel, R.2
Van Bruggen, C.F.3
Haas, C.4
-
42
-
-
84947460093
-
An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions
-
Liu, T. T.; Liu, Q.; Asiri, A. M.; Luo, Y. L.; Sun, X. P. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem. Commun. 2015, 51, 16683–16686.
-
(2015)
Chem. Commun.
, vol.51
, pp. 16683-16686
-
-
Liu, T.T.1
Liu, Q.2
Asiri, A.M.3
Luo, Y.L.4
Sun, X.P.5
-
43
-
-
84897514531
-
2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction
-
2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 4897-4900
-
-
Kong, D.S.1
Wang, H.T.2
Lu, Z.Y.3
Cui, Y.4
-
44
-
-
84921735164
-
2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction
-
2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 2015, 7, 1772–1779.
-
(2015)
ACS Appl Mater Interfaces
, vol.7
, pp. 1772-1779
-
-
Zhang, H.X.1
Yang, B.2
Wu, X.L.3
Li, Z.J.4
Lei, L.C.5
Zhang, X.W.6
-
45
-
-
80053050322
-
4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction
-
4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.
-
(2011)
Nat. Mater.
, vol.10
, pp. 780-786
-
-
Liang, Y.Y.1
Li, Y.G.2
Wang, H.L.3
Zhou, J.G.4
Wang, J.5
Regier, T.6
Dai, H.J.7
-
46
-
-
84900256379
-
4 nanoarrays with high activity for electrocatalytic oxygen evolution
-
4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895.
-
(2014)
Chem. Mater.
, vol.26
, pp. 1889-1895
-
-
Liu, X.J.1
Chang, Z.2
Luo, L.3
Xu, T.H.4
Lei, X.D.5
Liu, J.F.6
Sun, X.M.7
-
47
-
-
84953380815
-
Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation
-
Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 123-129
-
-
Cui, X.J.1
Ren, P.J.2
Deng, D.H.3
Deng, J.4
Bao, X.H.5
-
48
-
-
84904754398
-
Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values
-
Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. 2014, 126, 4461–4465.
-
(2014)
Angew. Chem.
, vol.126
, pp. 4461-4465
-
-
Zou, X.X.1
Huang, X.X.2
Goswami, A.3
Silva, R.4
Sathe, B.R.5
Mikmeková, E.6
Asefa, T.7
-
50
-
-
84901715785
-
Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14
-
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 7587-7590
-
-
Tian, J.Q.1
Liu, Q.2
Asiri, A.M.3
Sun, X.P.4
-
51
-
-
84975349573
-
Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron: Mechanism and measurement technique under high purity conditions
-
Pentland, N.; Bockris, J. O. M.; Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron: Mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 1957, 104, 182–194.
-
(1957)
J. Electrochem. Soc.
, vol.104
, pp. 182-194
-
-
Pentland, N.1
Bockris, J.O.M.2
Sheldon, E.3
-
52
-
-
0006785149
-
Hydrogen evolution reaction: Analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model
-
de Chialvo, M. R. G.; Chialvo, A. C. Hydrogen evolution reaction: Analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. J. Electroanal. Chem. 1994, 372, 209–223.
-
(1994)
J. Electroanal. Chem.
, vol.372
, pp. 209-223
-
-
de Chialvo, M.R.G.1
Chialvo, A.C.2
-
53
-
-
84949512347
-
-
Ma, T. Y.; Dai, S.; Qiao, S. Z. Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today, in press, 10.1016/j.mattod.2015.10.012
-
Ma, T. Y.; Dai, S.; Qiao, S. Z. Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today, in press, DOI: 10.1016/j.mattod.2015.10.012.
-
-
-
|