-
1
-
-
71149118442
-
Heat transfer enhancement of nanofluids
-
[1] Xuan, Y.M., Li, Q., Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21:1 (2000), 58–64.
-
(2000)
Int. J. Heat Fluid Flow
, vol.21
, Issue.1
, pp. 58-64
-
-
Xuan, Y.M.1
Li, Q.2
-
2
-
-
33645634748
-
Convective transport in nanofluids
-
[2] Buongiorno, J., Convective transport in nanofluids. J. Heat Transf.-Trans. Asme 128:3 (2006), 240–250.
-
(2006)
J. Heat Transf.-Trans. Asme
, vol.128
, Issue.3
, pp. 240-250
-
-
Buongiorno, J.1
-
3
-
-
33750694638
-
Heat transfer characteristics of nanofluids: a review
-
[3] Wang, X.-Q., Mujumdar, A.S., Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46:1 (2007), 1–19.
-
(2007)
Int. J. Therm. Sci.
, vol.46
, Issue.1
, pp. 1-19
-
-
Wang, X.-Q.1
Mujumdar, A.S.2
-
4
-
-
64749113545
-
Review of convective heat transfer enhancement with nanofluids
-
[4] Kakac, S., Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52:13–14 (2009), 3187–3196.
-
(2009)
Int. J. Heat Mass Transf.
, vol.52
, Issue.13-14
, pp. 3187-3196
-
-
Kakac, S.1
Pramuanjaroenkij, A.2
-
5
-
-
21844440367
-
Enhancing Thermal Conductivity of Fluids with Nanoparticles
-
Argonne National Lab IL (United States)
-
[5] Choi, S.U., Eastman, J., Enhancing Thermal Conductivity of Fluids with Nanoparticles. 1995, Argonne National Lab, IL (United States).
-
(1995)
-
-
Choi, S.U.1
Eastman, J.2
-
6
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
[6] Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J., Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78:6 (2001), 718–720.
-
(2001)
Appl. Phys. Lett.
, vol.78
, Issue.6
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Yu, W.4
Thompson, L.J.5
-
7
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
[7] Das, S.K., Putra, N., Thiesen, P., Roetzel, W., Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf.-Trans. Asme 125:4 (2003), 567–574.
-
(2003)
J. Heat Transf.-Trans. Asme
, vol.125
, Issue.4
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
8
-
-
84877743197
-
Thermal conductivity of nanofluids containing high aspect ratio fillers
-
[8] Gu, B., Hou, B., Lu, Z., Wang, Z., Chen, S., Thermal conductivity of nanofluids containing high aspect ratio fillers. Int. J. Heat Mass Transf. 64 (2013), 108–114.
-
(2013)
Int. J. Heat Mass Transf.
, vol.64
, pp. 108-114
-
-
Gu, B.1
Hou, B.2
Lu, Z.3
Wang, Z.4
Chen, S.5
-
9
-
-
0037902411
-
Investigation on convective heat transfer and flow features of nanofluids
-
[9] Xuan, Y.M., Li, Q., Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf.-Trans. Asme 125:1 (2003), 151–155.
-
(2003)
J. Heat Transf.-Trans. Asme
, vol.125
, Issue.1
, pp. 151-155
-
-
Xuan, Y.M.1
Li, Q.2
-
10
-
-
85138314611
-
Forced convective heat transfer of nanofluids - a review of the recent literature
-
[10] Dalkilic, A.S., Kayaci, N., Celen, A., Tabatabaei, M., Yildiz, O., Daungthongsuk, W., et al. Forced convective heat transfer of nanofluids - a review of the recent literature. Curr. Nanosci. 8:6 (2012), 949–969.
-
(2012)
Curr. Nanosci.
, vol.8
, Issue.6
, pp. 949-969
-
-
Dalkilic, A.S.1
Kayaci, N.2
Celen, A.3
Tabatabaei, M.4
Yildiz, O.5
Daungthongsuk, W.6
-
11
-
-
84899434013
-
Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts
-
[11] Luo, Z., Wang, C., Wei, W., Xiao, G., Ni, M., Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. Int. J. Heat Mass Transf. 75 (2014), 262–271.
-
(2014)
Int. J. Heat Mass Transf.
, vol.75
, pp. 262-271
-
-
Luo, Z.1
Wang, C.2
Wei, W.3
Xiao, G.4
Ni, M.5
-
12
-
-
78651069050
-
A review on applications and challenges of nanofluids
-
[12] Saidur, R., Leong, K.Y., Mohammad, H.A., A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15:3 (2011), 1646–1668.
-
(2011)
Renew. Sustain. Energy Rev.
, vol.15
, Issue.3
, pp. 1646-1668
-
-
Saidur, R.1
Leong, K.Y.2
Mohammad, H.A.3
-
13
-
-
81555201158
-
A review on nanofluids: preparation, stability mechanisms, and applications
-
Article No. 1
-
[13] Yu, W., Xie, H., A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater., 2012, 2012 Article No. 1.
-
(2012)
J. Nanomater.
, vol.2012
-
-
Yu, W.1
Xie, H.2
-
14
-
-
84869862190
-
A review of the applications of nanofluids in solar energy
-
[14] Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I., Wongwises, S., A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 57:2 (2013), 582–594.
-
(2013)
Int. J. Heat Mass Transf.
, vol.57
, Issue.2
, pp. 582-594
-
-
Mahian, O.1
Kianifar, A.2
Kalogirou, S.A.3
Pop, I.4
Wongwises, S.5
-
15
-
-
84872065279
-
Small particles, big impacts: a review of the diverse applications of nanofluids
-
[15] Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., et al. Small particles, big impacts: a review of the diverse applications of nanofluids. J. Appl. Phys., 113(1), 2013.
-
(2013)
J. Appl. Phys.
, vol.113
, Issue.1
-
-
Taylor, R.1
Coulombe, S.2
Otanicar, T.3
Phelan, P.4
Gunawan, A.5
Lv, W.6
-
16
-
-
84928501281
-
The potential of using nanofluids in PEM fuel cell cooling systems: a review
-
[16] Islam, M.R., Shabani, B., Rosengarten, G., Andrews, J., The potential of using nanofluids in PEM fuel cell cooling systems: a review. Renew. Sustain. Energy Rev. 48 (2015), 523–539.
-
(2015)
Renew. Sustain. Energy Rev.
, vol.48
, pp. 523-539
-
-
Islam, M.R.1
Shabani, B.2
Rosengarten, G.3
Andrews, J.4
-
17
-
-
0016535202
-
Performance of a “black” liquid flat-plate solar collector
-
[17] Minardi, J.E., Chuang, H.N., Performance of a “black” liquid flat-plate solar collector. Sol. Energy 17:3 (1975), 179–183.
-
(1975)
Sol. Energy
, vol.17
, Issue.3
, pp. 179-183
-
-
Minardi, J.E.1
Chuang, H.N.2
-
18
-
-
84864283515
-
Evaluation of the effect of nanofluid-based absorbers on direct solar collector
-
[18] Saidur, R., Meng, T.C., Said, Z., Hasanuzzaman, M., Kamyar, A., Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int. J. Heat Mass Transf. 55:21–22 (2012), 5899–5907.
-
(2012)
Int. J. Heat Mass Transf.
, vol.55
, Issue.21-22
, pp. 5899-5907
-
-
Saidur, R.1
Meng, T.C.2
Said, Z.3
Hasanuzzaman, M.4
Kamyar, A.5
-
19
-
-
84899819382
-
Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system
-
[19] Bandarra Filho, E.P., Hernandez Mendoza, O.S., Lins Beicker, C.L., Menezes, A., Wen, D., Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Convers. Manag. 84 (2014), 261–267.
-
(2014)
Energy Convers. Manag.
, vol.84
, pp. 261-267
-
-
Bandarra Filho, E.P.1
Hernandez Mendoza, O.S.2
Lins Beicker, C.L.3
Menezes, A.4
Wen, D.5
-
20
-
-
84890959640
-
Photothermal conversion characteristics of gold nanoparticle dispersions
-
[20] Zhang, H., Chen, H.-J., Du, X., Wen, D., Photothermal conversion characteristics of gold nanoparticle dispersions. Sol. Energy 100 (2014), 141–147.
-
(2014)
Sol. Energy
, vol.100
, pp. 141-147
-
-
Zhang, H.1
Chen, H.-J.2
Du, X.3
Wen, D.4
-
21
-
-
84922244006
-
A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector
-
[21] Liu, J., Ye, Z., Zhang, L., Fang, X., Zhang, Z., A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Sol. Energy Mater. Sol. Cells 136 (2015), 177–186.
-
(2015)
Sol. Energy Mater. Sol. Cells
, vol.136
, pp. 177-186
-
-
Liu, J.1
Ye, Z.2
Zhang, L.3
Fang, X.4
Zhang, Z.5
-
22
-
-
79953243924
-
Spatially varying extinction coefficient for direct absorption solar thermal collector optimization
-
[22] Otanicar, T.P., Phelan, P.E., Taylor, R.A., Tyagi, H., Spatially varying extinction coefficient for direct absorption solar thermal collector optimization. J. Sol. Energy Eng.-Trans. Asme, 133(2), 2011.
-
(2011)
J. Sol. Energy Eng.-Trans. Asme
, vol.133
, Issue.2
-
-
Otanicar, T.P.1
Phelan, P.E.2
Taylor, R.A.3
Tyagi, H.4
-
23
-
-
84884638712
-
Extinction coefficient of aqueous nanofluids containing multi-walled carbon nanotubes
-
[23] Lee, S.-H., Jang, S.P., Extinction coefficient of aqueous nanofluids containing multi-walled carbon nanotubes. Int. J. Heat Mass Transf. 67 (2013), 930–935.
-
(2013)
Int. J. Heat Mass Transf.
, vol.67
, pp. 930-935
-
-
Lee, S.-H.1
Jang, S.P.2
-
24
-
-
84881241983
-
Radiative properties of nanofluids
-
[24] Said, Z., Sajid, M., Saidur, R., Kamalisarvestani, M., Rahim, N., Radiative properties of nanofluids. Int. Commun. Heat Mass Transf. 46 (2013), 74–84.
-
(2013)
Int. Commun. Heat Mass Transf.
, vol.46
, pp. 74-84
-
-
Said, Z.1
Sajid, M.2
Saidur, R.3
Kamalisarvestani, M.4
Rahim, N.5
-
25
-
-
84898079161
-
Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles
-
[25] Xuan, Y., Duan, H., Li, Q., Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Adv. 4:31 (2014), 16206–16213.
-
(2014)
RSC Adv.
, vol.4
, Issue.31
, pp. 16206-16213
-
-
Xuan, Y.1
Duan, H.2
Li, Q.3
-
26
-
-
77955180865
-
Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector
-
[26] Tyagi, H., Phelan, P., Prasher, R., Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J. Sol. Energy Eng.-Trans. Asme, 131(4), 2009.
-
(2009)
J. Sol. Energy Eng.-Trans. Asme
, vol.131
, Issue.4
-
-
Tyagi, H.1
Phelan, P.2
Prasher, R.3
-
27
-
-
79955720743
-
Applicability of nanofluids in high flux solar collectors
-
[27] Taylor, R.A., Phelan, P.E., Otanicar, T.P., Walker, C.A., Nguyen, M., Trimble, S., et al. Applicability of nanofluids in high flux solar collectors. J. Renew. Sustain. Energy, 3(2), 2011.
-
(2011)
J. Renew. Sustain. Energy
, vol.3
, Issue.2
-
-
Taylor, R.A.1
Phelan, P.E.2
Otanicar, T.P.3
Walker, C.A.4
Nguyen, M.5
Trimble, S.6
-
28
-
-
82955167416
-
Optimization of nanofluid volumetric receivers for solar thermal energy conversion
-
[28] Lenert, A., Wang, E.N., Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol. Energy 86:1 (2012), 253–265.
-
(2012)
Sol. Energy
, vol.86
, Issue.1
, pp. 253-265
-
-
Lenert, A.1
Wang, E.N.2
-
29
-
-
82655187063
-
Nanofluid optical property characterization: towards efficient direct absorption solar collectors
-
[29] Taylor, R.A., Phelan, P.E., Otanicar, T.P., Adrian, R., Prasher, R., Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res. Lett. 6:1 (2011), 1–11.
-
(2011)
Nanoscale Res. Lett.
, vol.6
, Issue.1
, pp. 1-11
-
-
Taylor, R.A.1
Phelan, P.E.2
Otanicar, T.P.3
Adrian, R.4
Prasher, R.5
-
30
-
-
79952592696
-
Nanofluid-based direct absorption solar collector
-
[30] Otanicar, T.P., Phelan, P.E., Prasher, R.S., Rosengarten, G., Taylor, R.A., Nanofluid-based direct absorption solar collector. J. Renew. Sustain. Energy, 2(3), 2010, 033102.
-
(2010)
J. Renew. Sustain. Energy
, vol.2
, Issue.3
, pp. 033102
-
-
Otanicar, T.P.1
Phelan, P.E.2
Prasher, R.S.3
Rosengarten, G.4
Taylor, R.A.5
-
31
-
-
84879532752
-
Applicability of graphite nanofluids in direct solar energy absorption
-
[31] Ladjevardi, S.M., Asnaghi, A., Izadkhast, P.S., Kashani, A.H., Applicability of graphite nanofluids in direct solar energy absorption. Sol. Energy 94 (2013), 327–334.
-
(2013)
Sol. Energy
, vol.94
, pp. 327-334
-
-
Ladjevardi, S.M.1
Asnaghi, A.2
Izadkhast, P.S.3
Kashani, A.H.4
-
32
-
-
84899859295
-
High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors
-
[32] Hordy, N., Rabilloud, D., Meunier, J.-L., Coulombe, S., High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol. Energy 105 (2014), 82–90.
-
(2014)
Sol. Energy
, vol.105
, pp. 82-90
-
-
Hordy, N.1
Rabilloud, D.2
Meunier, J.-L.3
Coulombe, S.4
-
33
-
-
84888618344
-
A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector
-
[33] Karami, M., Bahabadi, M.A.A., Delfani, S., Ghozatloo, A., A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol. Energy Mater. Sol. Cells 121 (2014), 114–118.
-
(2014)
Sol. Energy Mater. Sol. Cells
, vol.121
, pp. 114-118
-
-
Karami, M.1
Bahabadi, M.A.A.2
Delfani, S.3
Ghozatloo, A.4
-
34
-
-
80051546789
-
Potential of carbon nanohorn-based suspensions for solar thermal collectors
-
[34] Sani, E., Mercatelli, L., Barison, S., Pagura, C., Agresti, F., Colla, L., et al. Potential of carbon nanohorn-based suspensions for solar thermal collectors. Sol. Energy Mater. Sol. Cells 95:11 (2011), 2994–3000.
-
(2011)
Sol. Energy Mater. Sol. Cells
, vol.95
, Issue.11
, pp. 2994-3000
-
-
Sani, E.1
Mercatelli, L.2
Barison, S.3
Pagura, C.4
Agresti, F.5
Colla, L.6
-
35
-
-
79960644631
-
Thermal properties of graphene and nanostructured carbon materials
-
[35] Balandin, A.A., Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10:8 (2011), 569–581.
-
(2011)
Nat. Mater.
, vol.10
, Issue.8
, pp. 569-581
-
-
Balandin, A.A.1
-
36
-
-
84907218651
-
Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors
-
[36] Zhang, L., Liu, J., He, G., Ye, Z., Fang, X., Zhang, Z., Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors. Sol. Energy Mater Sol. Cells 130 (2014), 521–528.
-
(2014)
Sol. Energy Mater Sol. Cells
, vol.130
, pp. 521-528
-
-
Zhang, L.1
Liu, J.2
He, G.3
Ye, Z.4
Fang, X.5
Zhang, Z.6
-
37
-
-
38349078270
-
Predicting the effective thermal conductivity of carbon nanotube based nanofluids
-
[37] Sastry, N.V., Bhunia, A., Sundararajan, T., Das, S.K., Predicting the effective thermal conductivity of carbon nanotube based nanofluids. Nanotechnology, 19(5), 2008, 055704.
-
(2008)
Nanotechnology
, vol.19
, Issue.5
, pp. 055704
-
-
Sastry, N.V.1
Bhunia, A.2
Sundararajan, T.3
Das, S.K.4
-
38
-
-
47249092699
-
Evidence for enhanced thermal conduction through percolating structures in nanofluids
-
[38] Philip, J., Shima, P., Raj, B., Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology, 19(30), 2008, 305706.
-
(2008)
Nanotechnology
, vol.19
, Issue.30
, pp. 305706
-
-
Philip, J.1
Shima, P.2
Raj, B.3
-
39
-
-
78449282688
-
Effect of graphite and carbon nanofiber additives on the performance efficiency of a gear pump driven hydraulic circuit using ethanol
-
[39] Martorana, P., Bayer, I.S., Steele, A., Loth, E., Effect of graphite and carbon nanofiber additives on the performance efficiency of a gear pump driven hydraulic circuit using ethanol. Ind. Eng. Chem. Res. 49:22 (2010), 11363–11368.
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, Issue.22
, pp. 11363-11368
-
-
Martorana, P.1
Bayer, I.S.2
Steele, A.3
Loth, E.4
-
40
-
-
84902184696
-
Effect of different types of carbon fillers on mechanical and rheological properties of cyclic olefin copolymer (COC) composites
-
[40] Kasgoz, A., Akın, D., Ayten, A.İ., Durmus, A., Effect of different types of carbon fillers on mechanical and rheological properties of cyclic olefin copolymer (COC) composites. Compos. Part B Eng. 66 (2014), 126–135.
-
(2014)
Compos. Part B Eng.
, vol.66
, pp. 126-135
-
-
Kasgoz, A.1
Akın, D.2
Ayten, A.İ.3
Durmus, A.4
-
41
-
-
80054878759
-
Potential of nanoparticle-enhanced ionic liquids (NEILs) as advanced heat-transfer fluids
-
[41] Bridges, N.J., Visser, A.E., Fox, E.B., Potential of nanoparticle-enhanced ionic liquids (NEILs) as advanced heat-transfer fluids. Energy & Fuels 25:10 (2011), 4862–4864.
-
(2011)
Energy & Fuels
, vol.25
, Issue.10
, pp. 4862-4864
-
-
Bridges, N.J.1
Visser, A.E.2
Fox, E.B.3
-
42
-
-
77249157777
-
Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids
-
[42] Nieto de Castro, C., Lourenço, M., Ribeiro, A., Langa, E., Vieira, S., Goodrich, P., et al. Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J. Chem. Eng. Data 55:2 (2009), 653–661.
-
(2009)
J. Chem. Eng. Data
, vol.55
, Issue.2
, pp. 653-661
-
-
Nieto de Castro, C.1
Lourenço, M.2
Ribeiro, A.3
Langa, E.4
Vieira, S.5
Goodrich, P.6
-
43
-
-
12344266499
-
Transient phase-induced nucleation in ionic liquid crystals and size-frustrated thickening
-
[43] Li, L., Groenewold, J., Picken, S.J., Transient phase-induced nucleation in ionic liquid crystals and size-frustrated thickening. Chem. Mater. 17:2 (2005), 250–257.
-
(2005)
Chem. Mater.
, vol.17
, Issue.2
, pp. 250-257
-
-
Li, L.1
Groenewold, J.2
Picken, S.J.3
-
44
-
-
80755158881
-
Optical properties of nanostructured materials: a review
-
[44] Flory, F., Escoubas, L., Berginc, G., Optical properties of nanostructured materials: a review. J. Nanophot. 5:1 (2011), 052502–052520.
-
(2011)
J. Nanophot.
, vol.5
, Issue.1
, pp. 052502-052520
-
-
Flory, F.1
Escoubas, L.2
Berginc, G.3
-
45
-
-
82955203466
-
Analytical model for the design of volumetric solar flow receivers
-
[45] Veeraragavan, A., Lenert, A., Yilbas, B., Al-Dini, S., Wang, E.N., Analytical model for the design of volumetric solar flow receivers. Int. J. Heat Mass Transf. 55:4 (2012), 556–564.
-
(2012)
Int. J. Heat Mass Transf.
, vol.55
, Issue.4
, pp. 556-564
-
-
Veeraragavan, A.1
Lenert, A.2
Yilbas, B.3
Al-Dini, S.4
Wang, E.N.5
-
46
-
-
84889241399
-
A novel method to evaluate dispersion stability of nanofluids
-
[46] Lee, J., Han, K., Koo, J., A novel method to evaluate dispersion stability of nanofluids. Int. J. Heat Mass Transf. 70 (2014), 421–429.
-
(2014)
Int. J. Heat Mass Transf.
, vol.70
, pp. 421-429
-
-
Lee, J.1
Han, K.2
Koo, J.3
|