메뉴 건너뛰기




Volumn 3, Issue , 2015, Pages 401-415

Regional drought monitoring based on multisensor remote sensing

Author keywords

[No Author keywords available]

Indexed keywords

EARTH SCIENCES;

EID: 84979541367     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b19321     Document Type: Chapter
Times cited : (6)

References (64)
  • 2
    • 84865408436 scopus 로고    scopus 로고
    • Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources
    • Anderson, M., R. Allen, A. Morse, and W. Kustas. 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing Environ 122:50–65.
    • (2012) Remote Sensing Environ , vol.122 , pp. 50-65
    • Anderson, M.1    Allen, R.2    Morse, A.3    Kustas, W.4
  • 3
    • 84883816437 scopus 로고    scopus 로고
    • An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with US drought monitor classifcations
    • Anderson, M., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda et al. 2013. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with US drought monitor classifcations. J Hydrometeorol 14:1035–1056.
    • (2013) J Hydrometeorol , vol.14 , pp. 1035-1056
    • Anderson, M.1    Hain, C.2    Otkin, J.3    Zhan, X.4    Mo, K.5    Svoboda, M.6
  • 4
    • 79251529645 scopus 로고    scopus 로고
    • Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States
    • Anderson, M., C. Hain, B. Wardlow, A. Pimstein, J. Mecikalski, and W. Kustas. 2011. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J Climate 24:2024–2044.
    • (2011) J Climate , vol.24 , pp. 2024-2044
    • Anderson, M.1    Hain, C.2    Wardlow, B.3    Pimstein, A.4    Mecikalski, J.5    Kustas, W.6
  • 5
    • 77649163834 scopus 로고    scopus 로고
    • Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring
    • Bolten, J., W. Crow, X. Zhan, T. Jackson, and C. Reynolds. 2010. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J Sel Top Appl Earth Observ Remote Sensing 3:57–66.
    • (2010) IEEE J Sel Top Appl Earth Observ Remote Sensing , vol.3 , pp. 57-66
    • Bolten, J.1    Crow, W.2    Zhan, X.3    Jackson, T.4    Reynolds, C.5
  • 6
    • 41449106514 scopus 로고    scopus 로고
    • The vegetation drought response index (VegDRI): A new integrated approach for monitoring drought stress in vegetation
    • Brown, J. F., B. D. Wardlow, T. Tadesse, M. J. Hayes, and B. C. Reed. 2008. The vegetation drought response index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GISci Remote Sensing 45:16–46.
    • (2008) Gisci Remote Sensing , vol.45 , pp. 16-46
    • Brown, J.F.1    Wardlow, B.D.2    Tadesse, T.3    Hayes, M.J.4    Reed, B.C.5
  • 7
    • 79960725295 scopus 로고    scopus 로고
    • Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems
    • Caccamo, G., L. Chisholm, R. Bradstock, and M. Puotinen. 2011. Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sensing Environ 115:2626–2639.
    • (2011) Remote Sensing Environ , vol.115 , pp. 2626-2639
    • Caccamo, G.1    Chisholm, L.2    Bradstock, R.3    Puotinen, M.4
  • 8
    • 41849093362 scopus 로고    scopus 로고
    • A regional-scale drought monitoring tool for the Carolinas
    • Carbone, G., J. Rhee, H. Mizzell, and R. Boyles. 2007. A regional-scale drought monitoring tool for the Carolinas. Bull Am Meteorol Soc 89:20–28.
    • (2007) Bull am Meteorol Soc , vol.89 , pp. 20-28
    • Carbone, G.1    Rhee, J.2    Mizzell, H.3    Boyles, R.4
  • 9
    • 84870993585 scopus 로고    scopus 로고
    • Evaluation of drought indices via remotely sensed data with hydrologi-cal variables
    • Choi, M., J. Jacobs, M. Anderson, and D. Bosch. 2013. Evaluation of drought indices via remotely sensed data with hydrologi-cal variables. J Hydrol 476:265–273.
    • (2013) J Hydrol , vol.476 , pp. 265-273
    • Choi, M.1    Jacobs, J.2    Anderson, M.3    Bosch, D.4
  • 10
    • 84880284418 scopus 로고    scopus 로고
    • Mapping of agriculture drought using remote sensing and GIS
    • Choudhary, S. S., P. K. Garg, and S. K. Ghosh. 2012. Mapping of agriculture drought using remote sensing and GIS. Int. J. Sci. Eng. Technol., 1(4):149–157.
    • (2012) Int. J. Sci. Eng. Technol , vol.1 , Issue.4 , pp. 149-157
    • Choudhary, S.S.1    Garg, P.K.2    Ghosh, S.K.3
  • 11
    • 0024223664 scopus 로고
    • The 1986 drought in the southeastern United States: How rare an event was it
    • Cook, E., M. Kablack, and G. Jacoby. 1988. The 1986 drought in the southeastern United States: How rare an event was it? J Geophys Res 93:14257–14260.
    • (1988) J Geophys Res , vol.93 , pp. 14257-14260
    • Cook, E.1    Kablack, M.2    Jacoby, G.3
  • 12
    • 0030429663 scopus 로고    scopus 로고
    • NDWI—A normalized diference water index for remote sensing of vegetation liquid water from space
    • Gao, B.-C. 1996. NDWI—A normalized diference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3):257–266.
    • (1996) Remote Sensing of Environment , vol.58 , Issue.3 , pp. 257-266
    • Gao, B.-C.1
  • 13
    • 84897025392 scopus 로고    scopus 로고
    • The responses of vegetation water content (EWT) and assessment of drought monitoring along a coastal region using remote sensing
    • Gao, Z., Q. Wang, X. Cao, and W. Gao. 2014. The responses of vegetation water content (EWT) and assessment of drought monitoring along a coastal region using remote sensing. GISci Remote Sensing 51:1–16.
    • (2014) Gisci Remote Sensing , vol.51 , pp. 1-16
    • Gao, Z.1    Wang, Q.2    Cao, X.3    Gao, W.4
  • 14
    • 84899686319 scopus 로고    scopus 로고
    • Accuracy of the Temperature–Vegetation Dryness Index using MODIS under water-limited vs. Energy-limited evapotranspiration conditions
    • Garcia, M., N. Fernández, L. Villagarcía, F. Domingo, J. Puigdefábregas, and I. Sandholt. 2014. Accuracy of the Temperature–Vegetation Dryness Index using MODIS under water-limited vs. energy-limited evapotranspiration conditions. Remote Sensing Environ 149:100–117.
    • (2014) Remote Sensing Environ , vol.149 , pp. 100-117
    • Garcia, M.1    Fernández, N.2    Villagarcía, L.3    Domingo, F.4    Puigdefábregas, J.5    Sandholt, I.6
  • 15
    • 34249910365 scopus 로고    scopus 로고
    • A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States
    • Gu, Y., J. F. Brown, J. P. Verdin, and B. Wardlow. 2007. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34(6). doi: 10.1029/2006GL029127.
    • (2007) Geophysical Research Letters , vol.34 , Issue.6
    • Gu, Y.1    Brown, J.F.2    Verdin, J.P.3    Wardlow, B.4
  • 17
    • 77950862145 scopus 로고    scopus 로고
    • Drought forecasting based on the remote sensing data using ARIMA models
    • Han, P., P. Wang, S. Zhang, and D. Zhu. 2010. Drought forecasting based on the remote sensing data using ARIMA models. Math Comput Model 51:1398–1403.
    • (2010) Math Comput Model , vol.51 , pp. 1398-1403
    • Han, P.1    Wang, P.2    Zhang, S.3    Zhu, D.4
  • 18
    • 0030434716 scopus 로고    scopus 로고
    • Analysis of model-calibrated soil moisture over the United States (1931–93) and application to long-range temperature forecasts
    • Huang, J., H. Van den Dool, and K. P. Georgakakos. 1996. Analysis of model-calibrated soil moisture over the United States (1931–93) and application to long-range temperature forecasts. J Climate 9:1350–1362.
    • (1996) J Climate , vol.9 , pp. 1350-1362
    • Huang, J.1    Van Den Dool, H.2    Georgakakos, K.P.3
  • 19
    • 81355149584 scopus 로고    scopus 로고
    • Integration of Palmer Drought Severity Index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota
    • Huang, S., D. Dahal, C. Young, G. Chander, and S. Liu. 2011. Integration of Palmer Drought Severity Index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota. Remote Sensing Environ 115:3377–3389.
    • (2011) Remote Sensing Environ , vol.115 , pp. 3377-3389
    • Huang, S.1    Dahal, D.2    Young, C.3    Chander, G.4    Liu, S.5
  • 20
    • 70449377987 scopus 로고    scopus 로고
    • Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments
    • Im, J., J. R. Jensen, M. Coleman, and E. Nelson. 2009. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto Int 24:293–312.
    • (2009) Geocarto Int , vol.24 , pp. 293-312
    • Im, J.1    Jensen, J.R.2    Coleman, M.3    Nelson, E.4
  • 21
    • 84855469971 scopus 로고    scopus 로고
    • Impervious surface quantifcation using a synthesis of artifcial immune networks and decision/regression trees from multi-sensor data
    • Im, J., Z. Lu, J. Rhee, and L. J. Quackenbush. 2012. Impervious surface quantifcation using a synthesis of artifcial immune networks and decision/regression trees from multi-sensor data. Remote Sensing Environ 117:102–113.
    • (2012) Remote Sensing Environ , vol.117 , pp. 102-113
    • Im, J.1    Lu, Z.2    Rhee, J.3    Quackenbush, L.J.4
  • 22
    • 84862978979 scopus 로고    scopus 로고
    • Managing the risks of extreme events and disasters to advance climate change adaptation
    • IPCC, Field, C. B., V. Balrros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK/New York
    • IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C. B., V. Balrros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK/New York, 582pp.
    • (2012) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change , pp. 582
  • 23
    • 84891658804 scopus 로고    scopus 로고
    • Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity
    • Ivits, E., S. Horion, R. Fensholt, and M. Cherlet. 2014. Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Glob Chang Biol 20:581–593.
    • (2014) Glob Chang Biol , vol.20 , pp. 581-593
    • Ivits, E.1    Horion, S.2    Fensholt, R.3    Cherlet, M.4
  • 25
    • 0142027915 scopus 로고    scopus 로고
    • Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices
    • Ji, L. and A. Peters. 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing Environ 87:85–98.
    • (2003) Remote Sensing Environ , vol.87 , pp. 85-98
    • Ji, L.1    Peters, A.2
  • 26
    • 0023471032 scopus 로고
    • Southeast drought in historical perspective
    • Karl, T. and P. Young. 1987. Te 1986 Southeast drought in historical perspective. Bull Am Meteorol Soc 68:773–778.
    • (1986) Bull am Meteorol Soc , vol.68 , pp. 773-778
    • Karl, T.1
  • 28
    • 84887202818 scopus 로고    scopus 로고
    • Drought monitoring using a Soil Wetness Defcit Index (SWDI) derived from MODIS satellite data
    • Keshavarz, M., M. Vazifedoust, and A. Alizadeh. 2014. Drought monitoring using a Soil Wetness Defcit Index (SWDI) derived from MODIS satellite data. Agric Water Manage 132:37–45.
    • (2014) Agric Water Manage , vol.132 , pp. 37-45
    • Keshavarz, M.1    Vazifedoust, M.2    Alizadeh, A.3
  • 29
    • 84867336190 scopus 로고    scopus 로고
    • Multisensor data fusion: A review of the state-of-the-art
    • Khaleghi, B., A. Khamis, F. O. Karray, and S. N. Razavi. 2013. Multisensor data fusion: A review of the state-of-the-art. Inform Fusion 14(1): 28–44.
    • (2013) Inform Fusion , vol.14 , Issue.1 , pp. 28-44
    • Khaleghi, B.1    Khamis, A.2    Karray, F.O.3    Razavi, S.N.4
  • 30
    • 0029500220 scopus 로고
    • Drought of the late 1980s in the United States as derived from NOAA polar–orbiting satellite data
    • Kogan, F. N. 1995a. Drought of the late 1980s in the United States as derived from NOAA polar–orbiting satellite data. Bull Am Meteorol Soc 76:655–668.
    • (1995) Bull am Meteorol Soc , vol.76 , pp. 655-668
    • Kogan, F.N.1
  • 31
    • 0028833901 scopus 로고
    • Application of vegetation index and brightness temperature for drought detection
    • Kogan, F. N. 1995b. Application of vegetation index and brightness temperature for drought detection. Adv Space Res 15:91–100.
    • (1995) Adv Space Res , vol.15 , pp. 91-100
    • Kogan, F.N.1
  • 32
    • 85060417131 scopus 로고    scopus 로고
    • Quick Response Research Report #136. National Hazards Research and Applications Information Center
    • University of Colorado, Boulder, CO
    • Knutson, C. and M. Hayes. 2002. South Carolina drought mitigation and response assessment: 1998–2000 drought. Quick Response Research Report #136. National Hazards Research and Applications Information Center, University of Colorado, Boulder, CO.
    • (2002) South Carolina Drought Mitigation and Response Assessment: 1998–2000 Drought
    • Knutson, C.1    Hayes, M.2
  • 33
    • 84906945992 scopus 로고    scopus 로고
    • Forest biomass and carbon stock quantifcation using airborne LiDAR data: A case study over Huntington Wildlife Forest in the Adirondack Park
    • Li, M., J. Im, L. Quackenbush, and L. Tao. 2014. Forest biomass and carbon stock quantifcation using airborne LiDAR data: A case study over Huntington Wildlife Forest in the Adirondack Park. IEEE J Sel Top Appl Earth Observ Remote Sensing 7(7):3143–3156.
    • (2014) IEEE J Sel Top Appl Earth Observ Remote Sensing , vol.7 , Issue.7 , pp. 3143-3156
    • Li, M.1    Im, J.2    Quackenbush, L.3    Tao, L.4
  • 34
    • 0001895140 scopus 로고
    • The relationship of drought frequency and duration to time scales. Preprints, Eighth Conference on Applied Climatology, Dallas, TX
    • McKee, T. B., N. J. Doesken, and J. Kleist. 1993. The relationship of drought frequency and duration to time scales. Preprints, Eighth Conference on Applied Climatology, Dallas, TX. Am Meteorol Soc 179–184.
    • (1993) Am Meteorol Soc , pp. 179-184
    • McKee, T.B.1    Doesken, N.J.2    Kleist, J.3
  • 35
    • 33747853860 scopus 로고    scopus 로고
    • Drought forecasting using feed-forward recursive neural network
    • Mishra, A. K. and V. R. Desai. 2006. Drought forecasting using feed-forward recursive neural network. Ecol Model 198:127–138.
    • (2006) Ecol Model , vol.198 , pp. 127-138
    • Mishra, A.K.1    Desai, V.R.2
  • 36
    • 79955881885 scopus 로고    scopus 로고
    • Drought modeling—A review
    • Mishra, A. K. and V. Singh. 2011. Drought modeling—A review. J Hydrol 403:157–175.
    • (2011) J Hydrol , vol.403 , pp. 157-175
    • Mishra, A.K.1    Singh, V.2
  • 38
    • 0003255373 scopus 로고
    • U.S. Department of Commerce, Weather Bureau, Washington, DC
    • Palmer, W. C. 1965. Meteorological drought. Research Paper No. 45. U.S. Department of Commerce, Weather Bureau, Washington, DC, p. 58.
    • (1965) Meteorological Drought. Research Paper , vol.45 , pp. 58
    • Palmer, W.C.1
  • 39
    • 0000002007 scopus 로고
    • Keeping track of crop moisture conditions, nationwide: Te new crop moisture index
    • Palmer, W. C. 1968. Keeping track of crop moisture conditions, nationwide: Te new crop moisture index. Weatherwise 21:156–161.
    • (1968) Weatherwise , vol.21 , pp. 156-161
    • Palmer, W.C.1
  • 40
    • 85060422287 scopus 로고    scopus 로고
    • Multi-sensor blending for regional drought monitoring using machine learning approaches
    • in review
    • Park, S., J. Im, E. Jang, H. Yoon, and J. Rhee. 2015. Multi-sensor blending for regional drought monitoring using machine learning approaches. Agric Forest Meteorol, in review.
    • (2015) Agric Forest Meteorol
    • Park, S.1    Im, J.2    Jang, E.3    Yoon, H.4    Rhee, J.5
  • 43
    • 77956873550 scopus 로고    scopus 로고
    • Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data
    • Rhee, J., J. Im, and G. J. Carbone. 2010. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing Environ 114:2875–2887.
    • (2010) Remote Sensing Environ , vol.114 , pp. 2875-2887
    • Rhee, J.1    Im, J.2    Carbone, G.J.3
  • 44
    • 78650922411 scopus 로고    scopus 로고
    • Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery
    • Rojas, O., A. Vrieling, and F. Rembold. 2011. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sensing Environ 115:343–352.
    • (2011) Remote Sensing Environ , vol.115 , pp. 343-352
    • Rojas, O.1    Vrieling, A.2    Rembold, F.3
  • 45
    • 84906949318 scopus 로고    scopus 로고
    • Rulequest Research, Accessed May 17, 2014
    • Rulequest Research. 2012. Data mining with Cubist. http://www. rulequest.com/cubist-info.html. (Accessed May 17, 2014.)
    • (2012) Data Mining with Cubist
  • 46
    • 84897374226 scopus 로고    scopus 로고
    • Near real-time prediction of US corn yields based on time-series MODIS data
    • Sakamoto, T., A. Gitelson, and T. Arkebauer. 2014. Near real-time prediction of US corn yields based on time-series MODIS data. Remote Sensing Environ 147:219–231.
    • (2014) Remote Sensing Environ , vol.147 , pp. 219-231
    • Sakamoto, T.1    Gitelson, A.2    Arkebauer, T.3
  • 48
    • 84921069001 scopus 로고    scopus 로고
    • SMOS‐derived soil moisture anomalies and drought indices: A comparative analysis using in situ measurements
    • Scaini, A., N. Sánchez, S. Vicente-Serrano, and J. Martínez-Fernández. 2014. SMOS‐derived soil moisture anomalies and drought indices: A comparative analysis using in situ measurements. Hydrol Processes 29(3):373–383.
    • (2014) Hydrol Processes , vol.29 , Issue.3 , pp. 373-383
    • Scaini, A.1    Sánchez, N.2    Vicente-Serrano, S.3    Martínez-Fernández, J.4
  • 49
    • 84927674578 scopus 로고    scopus 로고
    • Multi-sensor space observation of heavy food and drought conditions in the Amazon Region
    • Berlin, Germany: Springer
    • Seitz, F., K. Hedman, F. Meyer, and H. Lee. 2014. Multi-sensor space observation of heavy food and drought conditions in the Amazon Region. In Earth on the Edge: Science for a Sustainable Planet. Berlin, Germany: Springer, pp. 311–317.
    • (2014) Earth on the Edge: Science for a Sustainable Planet , pp. 311-317
    • Seitz, F.1    Hedman, K.2    Meyer, F.3
  • 51
    • 84864498578 scopus 로고    scopus 로고
    • Drought severity assessment in arid area of Tal Doab using remote sensing and GIS
    • Shaheen, A. and M. Baig. 2011. Drought severity assessment in arid area of Tal Doab using remote sensing and GIS. Int J Water Resour Arid Environ 1:92–101.
    • (2011) Int J Water Resour Arid Environ , vol.1 , pp. 92-101
    • Shaheen, A.1    Baig, M.2
  • 53
    • 20444441158 scopus 로고    scopus 로고
    • A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the US central plains
    • Tadesse, T., J. F. Brown, and M. J. Hayes. 2005. A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the US central plains. ISPRS Journal of Photogrammetry and Remote Sensing 59(4):244–253.
    • (2005) ISPRS Journal of Photogrammetry and Remote Sensing , vol.59 , Issue.4 , pp. 244-253
    • Tadesse, T.1    Brown, J.F.2    Hayes, M.J.3
  • 54
    • 77949899286 scopus 로고    scopus 로고
    • Te vegetation outlook (VegOut): A new method for predicting vegetation seasonal greenness
    • Tadesse, T., B. D. Wardlow, M. J. Hayes, M. D. Svoboda, and J. F. Brown. 2010. Te vegetation outlook (VegOut): A new method for predicting vegetation seasonal greenness. GIScience & Remote Sensing 47(1):25–52.
    • (2010) Giscience & Remote Sensing , vol.47 , Issue.1 , pp. 25-52
    • Tadesse, T.1    Wardlow, B.D.2    Hayes, M.J.3    Svoboda, M.D.4    Brown, J.F.5
  • 55
    • 1142306100 scopus 로고    scopus 로고
    • Using MODIS Land Surface Temperature and Normalized Diference Vegetation Index products for monitoring drought in the southern Great Plains, USA
    • Wan, Z., P. Wang, and X. Li. 2004. Using MODIS Land Surface Temperature and Normalized Diference Vegetation Index products for monitoring drought in the southern Great Plains, USA. Int J Remote Sensing 25:61–72.
    • (2004) Int J Remote Sensing , vol.25 , pp. 61-72
    • Wan, Z.1    Wang, P.2    Li, X.3
  • 56
    • 37349101941 scopus 로고    scopus 로고
    • NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing
    • Wang, L. and J. J. Qu. 2007. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34(20). L20405.
    • (2007) Geophysical Research Letters , vol.34 , Issue.20 , pp. L20405
    • Wang, L.1    Qu, J.J.2
  • 57
    • 84886859103 scopus 로고    scopus 로고
    • Construction of Drought Indices from passive microwave remote sensing AMSR-E data in Huaihe River Basin
    • Wang, R., J. Xu, D. Wang, X. Xie, and P. Wang. 2013. Construction of Drought Indices from passive microwave remote sensing AMSR-E data in Huaihe River Basin. Appl Mech Mater 397:2503–2506.
    • (2013) Appl Mech Mater , vol.397 , pp. 2503-2506
    • Wang, R.1    Xu, J.2    Wang, D.3    Xie, X.4    Wang, P.5
  • 59
    • 38849210135 scopus 로고    scopus 로고
    • The drought of 1998–2002 in North Carolina— Precipitation and hydrologic conditions
    • 2005-5053. U.S. Geological Survey, U.S. Department of the Interior, Reston, VA
    • Weaver, J. C. 2005. The drought of 1998–2002 in North Carolina— Precipitation and hydrologic conditions. Scientifc Investigations Report, 2005-5053. U.S. Geological Survey, U.S. Department of the Interior, Reston, VA, 88pp.
    • (2005) Scientifc Investigations Report , pp. 88
    • Weaver, J.C.1
  • 60
    • 3242673143 scopus 로고    scopus 로고
    • A self-calibrating Palmer Drought Severity Index
    • Wells, N., S. Goddard, and M. J. Hayes. 2004. A self-calibrating Palmer Drought Severity Index. J Climate 17:2235–2351.
    • (2004) J Climate , vol.17 , pp. 2235-2351
    • Wells, N.1    Goddard, S.2    Hayes, M.J.3
  • 62
    • 84875595745 scopus 로고    scopus 로고
    • Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data
    • Zhang, A. and G. Jia. 2013. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing Environ 134:12–23.
    • (2013) Remote Sensing Environ , vol.134 , pp. 12-23
    • Zhang, A.1    Jia, G.2
  • 63
    • 84876453966 scopus 로고    scopus 로고
    • VSDI: A visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing
    • Zhang, N., Y. Hong, Q. Qin, and L. Liu. 2013. VSDI: A visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. Int J Remote Sensing 34:4585–4609.
    • (2013) Int J Remote Sensing , vol.34 , pp. 4585-4609
    • Zhang, N.1    Hong, Y.2    Qin, Q.3    Liu, L.4
  • 64
    • 84889569642 scopus 로고    scopus 로고
    • Assessment of soil water defcit for the middle reaches of Yarlung-Zangbo River from optical and passive microwave images
    • Zhong, L., Y. Ma, Y. Fu, X. Pan, W. Hu, Z. Su et al. 2014. Assessment of soil water defcit for the middle reaches of Yarlung-Zangbo River from optical and passive microwave images. Remote Sensing Environ 142:1–8.
    • (2014) Remote Sensing Environ , vol.142 , pp. 1-8
    • Zhong, L.1    Ma, Y.2    Fu, Y.3    Pan, X.4    Hu, W.5    Su, Z.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.