-
1
-
-
84977629569
-
Is image super-resolution helpful for other vision tasks?
-
Dai, D., Wang, Y., Chen, Y., Van Gool, L.: Is image super-resolution helpful for other vision tasks? In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2016)
-
(2016)
IEEE Winter Conference on Applications of Computer Vision (WACV)
-
-
Dai, D.1
Wang, Y.2
Chen, Y.3
Van Gool, L.4
-
2
-
-
84954420731
-
Stroke width-based directional total variation regularisation for document image super resolution
-
Abedi, A., Kabir, E.: Stroke width-based directional total variation regularisation for document image super resolution. IET Image Process. 10, 158–166 (2016)
-
(2016)
IET Image Process.
, vol.10
, pp. 158-166
-
-
Abedi, A.1
Kabir, E.2
-
3
-
-
84961589052
-
Resolution enhancement of textual images: a survey of single image-based methods
-
Walha, R., Drira, F., Lebourgeois, F., Alimi, A.M., Garcia, C.: Resolution enhancement of textual images: a survey of single image-based methods. IET Image Process. 10, 325–337 (2016)
-
(2016)
IET Image Process.
, vol.10
, pp. 325-337
-
-
Walha, R.1
Drira, F.2
Lebourgeois, F.3
Alimi, A.M.4
Garcia, C.5
-
4
-
-
84915817188
-
Document image super-resolution using structural similarity and Markov random field
-
Chen, X., Qi, C.: Document image super-resolution using structural similarity and Markov random field. IET Image Process. 8, 687–698 (2014)
-
(2014)
IET Image Process.
, vol.8
, pp. 687-698
-
-
Chen, X.1
Qi, C.2
-
5
-
-
84962578782
-
ICDAR2015 competition on text image super-resolution
-
Peyrard, C., Baccouche, M., Mamalet, F., Garcia, C.: ICDAR2015 competition on text image super-resolution. In: 13th International Conference on Document Analysis and Recognition (ICDAR 2015), pp. 1201–1205 (2015)
-
(2015)
13th International Conference on Document Analysis and Recognition (ICDAR 2015)
, pp. 1201-1205
-
-
Peyrard, C.1
Baccouche, M.2
Mamalet, F.3
Garcia, C.4
-
6
-
-
84925488085
-
Resolution enhancement of textual images via multiple coupleddictionaries and adaptive sparse representation selection
-
Walha, R., Drira, F., Lebourgeois, F., Garcia, C., Alimi, A.M.: Resolution enhancement of textual images via multiple coupleddictionaries and adaptive sparse representation selection. Int. J. Doc. Anal. Recognit. IJDAR 18, 87–107 (2015)
-
(2015)
Int. J. Doc. Anal. Recognit. IJDAR
, vol.18
, pp. 87-107
-
-
Walha, R.1
Drira, F.2
Lebourgeois, F.3
Garcia, C.4
Alimi, A.M.5
-
7
-
-
5044219639
-
Super-resolution through neighbor embedding
-
Chang, H., Yeung, D.-Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2004. CVPR 2004, pp. I–I (2004)
-
(2004)
Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2004. CVPR 2004, pp. I–I
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
8
-
-
84906860902
-
Face super-resolution via multilayer locality-constrained iterative neighbor embedding and intermediate dictionary learning
-
Jiang, J., Hu, R., Wang, Z., Han, Z.: Face super-resolution via multilayer locality-constrained iterative neighbor embedding and intermediate dictionary learning. IEEE Trans. Image Process. 23, 4220–4231 (2014)
-
(2014)
IEEE Trans. Image Process.
, vol.23
, pp. 4220-4231
-
-
Jiang, J.1
Hu, R.2
Wang, Z.3
Han, Z.4
-
9
-
-
34248586002
-
Example-based single document image super-resolution: a global MAP approach with outlier rejection
-
Datsenko, D., Elad, M.: Example-based single document image super-resolution: a global MAP approach with outlier rejection. Multidimens. Syst. Signal Process. 18, 103–121 (2007)
-
(2007)
Multidimens. Syst. Signal Process.
, vol.18
, pp. 103-121
-
-
Datsenko, D.1
Elad, M.2
-
10
-
-
79952931901
-
Partially supervised neighbor embedding for example-based image super-resolution
-
Zhang, K., Gao, X., Li, X., Tao, D.: Partially supervised neighbor embedding for example-based image super-resolution. IEEE J. Sel. Top. Signal Process. 5, 230–239 (2011)
-
(2011)
IEEE J. Sel. Top. Signal Process
, vol.5
, pp. 230-239
-
-
Zhang, K.1
Gao, X.2
Li, X.3
Tao, D.4
-
11
-
-
84898792173
-
Anchored neighborhood regression for fast example-based super-resolution
-
Timofte, R., De, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: IEEE International Conference on Computer Vision (ICCV), 2013, pp. 1920–1927 (2013)
-
(2013)
IEEE International Conference on Computer Vision (ICCV), 2013
, pp. 1920-1927
-
-
Timofte, R.1
De, V.2
Van Gool, L.3
-
12
-
-
84983684720
-
A+: adjusted anchored neighborhood regression for fast super-resolution
-
Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) Computer Vision – ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, Singapore, November 1–5, 2014, Revised Selected Papers, Part IV, ed Cham: Springer International Publishing, pp. 111–126 (2015)
-
(2015)
Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) Computer Vision – ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, Singapore, November 1–5, 2014, Revised Selected Papers, Part IV, ed Cham: Springer International Publishing, pp. 111–126
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
13
-
-
84946887644
-
Semantic super-resolution: when and where is it useful?
-
Timofte, R., De Smet, V., Van Gool, L.: Semantic super-resolution: when and where is it useful? Comput. Vis. Image Underst. 142, 1–12 (2016)
-
(2016)
Comput. Vis. Image Underst.
, vol.142
, pp. 1-12
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
14
-
-
84855655878
-
On single image scale-up using sparse-representations
-
Springer, Berlin
-
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L. et al. (Eds.) Curves and Surfaces: 7th International Conference, Avignon, France, June 24–30, 2010, Revised Selected Papers, pp. 711–730. Springer, Berlin (2012)
-
(2012)
Curves and Surfaces: 7th International Conference, Avignon, France, June 24–30, 2010, Revised Selected Papers
, pp. 711-730
-
-
Zeyde, R.1
Elad, M.2
Protter, M.3
Boissonnat, J.-D.4
Chenin, P.5
Cohen, A.6
Gout, C.7
Lyche, T.8
Mazure, M.-L.9
-
15
-
-
84959020798
-
Sparse support regression for image super-resolution
-
Jiang, J., Ma, X., Cai, Z., Hu, R.: Sparse support regression for image super-resolution. Photonics J. IEEE 7, 1–11 (2015)
-
(2015)
Photonics J. IEEE
, vol.7
, pp. 1-11
-
-
Jiang, J.1
Ma, X.2
Cai, Z.3
Hu, R.4
-
16
-
-
84879394662
-
Efficient single image super-resolution via graph-constrained least squares regression
-
Jiang, J., Hu, R., Han, Z., Lu, T.: Efficient single image super-resolution via graph-constrained least squares regression. Multimed. Tools Appl. 72, 2573–2596 (2014)
-
(2014)
Multimed. Tools Appl.
, vol.72
, pp. 2573-2596
-
-
Jiang, J.1
Hu, R.2
Han, Z.3
Lu, T.4
-
17
-
-
77956006189
-
Context-constrained hallucination for image super-resolution
-
Sun, J., Zhu, J., Tappen, M.F.: Context-constrained hallucination for image super-resolution. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 231–238 (2010)
-
(2010)
2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 231-238
-
-
Sun, J.1
Zhu, J.2
Tappen, M.F.3
-
18
-
-
33750383209
-
K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
-
Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)
-
(2006)
IEEE Trans. Signal Process.
, vol.54
, pp. 4311-4322
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
19
-
-
84912029649
-
Fast single image super-resolution via self-example learning and sparse representation
-
Zhu, Z., Guo, F., Yu, H., Chen, C.: Fast single image super-resolution via self-example learning and sparse representation. IEEE Trans. Multimed. 16, 2178–2190 (2014)
-
(2014)
IEEE Trans. Multimed.
, vol.16
, pp. 2178-2190
-
-
Zhu, Z.1
Guo, F.2
Yu, H.3
Chen, C.4
-
20
-
-
84958107191
-
Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness
-
Yeganli, F., Nazzal, M., Ozkaramanli, H.: Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness. Signal Image Video Process. 10, 535–542 (2016)
-
(2016)
Signal Image Video Process.
, vol.10
, pp. 535-542
-
-
Yeganli, F.1
Nazzal, M.2
Ozkaramanli, H.3
-
22
-
-
0043166439
-
Handwritten digit recognition: benchmarking of state-of-the-art techniques
-
Liu, C.-L., Nakashima, K., Sako, H., Fujisawa, H.: Handwritten digit recognition: benchmarking of state-of-the-art techniques. Pattern Recognit. 36, 2271–2285 (2003)
-
(2003)
Pattern Recognit.
, vol.36
, pp. 2271-2285
-
-
Liu, C.-L.1
Nakashima, K.2
Sako, H.3
Fujisawa, H.4
-
23
-
-
84903710924
-
Efficient example-based super-resolution of single text images based on selective patch processing
-
Nayef, N., Chazalon, J., Gomez-Kramer, P., Ogier, J.-M.: Efficient example-based super-resolution of single text images based on selective patch processing. In: 2014 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 227–231 (2014)
-
(2014)
2014 11th IAPR International Workshop on Document Analysis Systems (DAS)
, pp. 227-231
-
-
Nayef, N.1
Chazalon, J.2
Gomez-Kramer, P.3
Ogier, J.-M.4
-
24
-
-
1942436689
-
Image quality assessment: from error visibility to structural similarity
-
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)
-
(2004)
IEEE Trans. Image Process.
, vol.13
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
26
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295–307 (2016)
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
|