메뉴 건너뛰기




Volumn , Issue , 2016, Pages 707-710

A semi-automatic method for efficient detection of stories on social media

Author keywords

[No Author keywords available]

Indexed keywords

CONVENTIONAL METHODS; EFFICIENT DETECTION; REAL-WORLD; SEMI-AUTOMATIC TOOLS; SEMIAUTOMATIC METHODS; SOCIAL MEDIA; USER STUDY;

EID: 84979500768     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (11)
  • 3
    • 85122032657 scopus 로고    scopus 로고
    • Asobek: Twitter paraphrase identification with simple overlap features and svms
    • Eyecioglu, A., and Keller, B. 2015. Asobek: Twitter paraphrase identification with simple overlap features and svms. In SemEval.
    • (2015) SemEval
    • Eyecioglu, A.1    Keller, B.2
  • 5
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M. 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association 66(336):846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 6
    • 78149388865 scopus 로고    scopus 로고
    • Your news in 140 characters: Exploring the role of social media in journalism
    • Stassen, W. 2010. Your news in 140 characters: exploring the role of social media in journalism. Global Media Journal-African Edition 4(1):116-131.
    • (2010) Global Media Journal-African Edition , vol.4 , Issue.1 , pp. 116-131
    • Stassen, W.1
  • 7
    • 78649420560 scopus 로고    scopus 로고
    • Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
    • Vinh, N. X.; Epps, J.; and Bailey, J. 2010. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. The Journal of Machine Learning Research 11:2837-2854.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 2837-2854
    • Vinh, N.X.1    Epps, J.2    Bailey, J.3
  • 8
    • 84964756592 scopus 로고    scopus 로고
    • A human-machine collaborative system for identifying rumors on twitter
    • Vosoughi, S., and Roy, D. 2015. A human-machine collaborative system for identifying rumors on twitter. In proceedings of ICDMW 2015, 47-50.
    • (2015) Proceedings of ICDMW 2015 , pp. 47-50
    • Vosoughi, S.1    Roy, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.