메뉴 건너뛰기




Volumn 254, Issue 1, 2016, Pages 236-252

A two-stage classification technique for bankruptcy prediction

Author keywords

Bankruptcy; Decision support systems; Finance; Financial profile; Forecasting

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECISION SUPPORT SYSTEMS; FINANCE;

EID: 84979462408     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ejor.2016.03.008     Document Type: Article
Times cited : (104)

References (85)
  • 1
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
    • Alfaro E., Garcia N., Games M., and Elizondo D. Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks Decision Support Systems 45 2008 110 122
    • (2008) Decision Support Systems , vol.45 , pp. 110-122
    • Alfaro, E.1    Garcia, N.2    Games, M.3    Elizondo, D.4
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy Journal of Finance 23 1968 589 609
    • (1968) Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 3
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: A survey and new results
    • Atiya A. Bankruptcy prediction for credit risk using neural networks: a survey and new results IEEE Transactions on Neural Networks 7 2001 929 935
    • (2001) IEEE Transactions on Neural Networks , vol.7 , pp. 929-935
    • Atiya, A.1
  • 4
    • 84980201928 scopus 로고
    • Bankruptcy prediction: An investigation of cash flow based models
    • Aziz A., Emanuel D.C., and Lawson G.C. Bankruptcy prediction: an investigation of cash flow based models Journal of Management Studies 25 1988 419 437
    • (1988) Journal of Management Studies , vol.25 , pp. 419-437
    • Aziz, A.1    Emanuel, D.C.2    Lawson, G.C.3
  • 5
    • 33144462955 scopus 로고    scopus 로고
    • 35 years of studies on business failure: An overview of the classical statistical methodologies and their related problems
    • Balcaen S., and Ooghe H. 35 years of studies on business failure: an overview of the classical statistical methodologies and their related problems British Accounting Review 38 2006 63 93
    • (2006) British Accounting Review , vol.38 , pp. 63-93
    • Balcaen, S.1    Ooghe, H.2
  • 7
    • 0000721430 scopus 로고    scopus 로고
    • Detecting the risk of company failure at the banque de France
    • Bardos M. Detecting the risk of company failure at the banque de france Journal of Banking and Finance 22 1998 1405 1419
    • (1998) Journal of Banking and Finance , vol.22 , pp. 1405-1419
    • Bardos, M.1
  • 8
    • 33947728092 scopus 로고    scopus 로고
    • What is at stake in the construction and use of credit scores?
    • Bardos M. What is at stake in the construction and use of credit scores? Computational Economics 29 2007 159 172
    • (2007) Computational Economics , vol.29 , pp. 159-172
    • Bardos, M.1
  • 9
    • 80255123800 scopus 로고    scopus 로고
    • Does segmentation always improve model performance in credit scoring?
    • Bijak K., and Thomas L.C. Does segmentation always improve model performance in credit scoring? Expert Systems with Applications 39 2012 2433 2442
    • (2012) Expert Systems with Applications , vol.39 , pp. 2433-2442
    • Bijak, K.1    Thomas, L.C.2
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors Machine Learning 24 1996 123 140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 14
    • 53849090652 scopus 로고    scopus 로고
    • An integrative model with subject weight based on neural network learning for bankruptcy prediction
    • Cho S., Kim J., and Bae J.K. An integrative model with subject weight based on neural network learning for bankruptcy prediction Expert Systems with Applications 36 2009 403 410
    • (2009) Expert Systems with Applications , vol.36 , pp. 403-410
    • Cho, S.1    Kim, J.2    Bae, J.K.3
  • 15
    • 84875706465 scopus 로고    scopus 로고
    • Application of hybrid case-based reasoning for enhanced performance in bankruptcy prediction
    • Chuang C.L. Application of hybrid case-based reasoning for enhanced performance in bankruptcy prediction Information Sciences 236 2013 174 185
    • (2013) Information Sciences , vol.236 , pp. 174-185
    • Chuang, C.L.1
  • 17
    • 0000070103 scopus 로고
    • The aftermath of organizational decline: A longitudinal study of the strategic and managerial characteristics of declining firms
    • D'Aveni R.A. The aftermath of organizational decline: a longitudinal study of the strategic and managerial characteristics of declining firms Academy of Management Journal 32 1989 577 605
    • (1989) Academy of Management Journal , vol.32 , pp. 577-605
    • D'Aveni, R.A.1
  • 18
    • 0036161257 scopus 로고    scopus 로고
    • Linear programming boosting via column generation
    • Demiriz A., Bennett K.P., and Taylor J.S. Linear programming boosting via column generation Machine Learning 46 2002 225 254
    • (2002) Machine Learning , vol.46 , pp. 225-254
    • Demiriz, A.1    Bennett, K.P.2    Taylor, J.S.3
  • 19
    • 0030143666 scopus 로고    scopus 로고
    • A survey of business failures with an emphasis on prediction methods and industrial applications
    • Dimitras A.I., Zanakis S., and Zopounidis C. A survey of business failures with an emphasis on prediction methods and industrial applications European Journal of Operational Research 90 1996 487 513
    • (1996) European Journal of Operational Research , vol.90 , pp. 487-513
    • Dimitras, A.I.1    Zanakis, S.2    Zopounidis, C.3
  • 21
    • 84881415129 scopus 로고    scopus 로고
    • Bankruptcy prediction for Russian companies: Application of combined classifiers
    • Fedorova E., Gilenko E., and Dovzhenko S. Bankruptcy prediction for Russian companies: application of combined classifiers Expert Systems with Applications 40 2013 7285 7293
    • (2013) Expert Systems with Applications , vol.40 , pp. 7285-7293
    • Fedorova, E.1    Gilenko, E.2    Dovzhenko, S.3
  • 22
    • 78650417769 scopus 로고    scopus 로고
    • Multiple classifier architectures and their application to credit risk assessment
    • Finlay S. Multiple classifier architectures and their application to credit risk assessment European Journal of Operational Research 210 2011 368 378
    • (2011) European Journal of Operational Research , vol.210 , pp. 368-378
    • Finlay, S.1
  • 25
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting Annals of Statistics 28 2000 337 374
    • (2000) Annals of Statistics , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 26
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • Friedman J., Hastie T., and Tibshirani R. An adaptive version of the boost by majority algorithm Machine Learning 43 2001 293 318
    • (2001) Machine Learning , vol.43 , pp. 293-318
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 27
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification: The case of financial distress
    • Frydman H., Altman E., and Kao D. Introducing recursive partitioning for financial classification: the case of financial distress Journal of Finance 40 1985 269 291
    • (1985) Journal of Finance , vol.40 , pp. 269-291
    • Frydman, H.1    Altman, E.2    Kao, D.3
  • 28
  • 30
    • 85027952626 scopus 로고    scopus 로고
    • Prediction of financial distress: An empirical study of listed Chinese companies using data mining
    • Geng R., Bose I., and Chen X. Prediction of financial distress: an empirical study of listed Chinese companies using data mining European Journal of Operational Research 241 2015 236 247
    • (2015) European Journal of Operational Research , vol.241 , pp. 236-247
    • Geng, R.1    Bose, I.2    Chen, X.3
  • 32
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • Hand D.J. Measuring classifier performance: a coherent alternative to the area under the ROC curve Machine Learning 77 2009 103 123
    • (2009) Machine Learning , vol.77 , pp. 103-123
    • Hand, D.J.1
  • 34
    • 84907345291 scopus 로고    scopus 로고
    • AdaBoost based bankruptcy forecasting of Korean construction companies
    • Heo J., and Yang J.Y. AdaBoost based bankruptcy forecasting of korean construction companies Applied Soft Computing 24 2014 494 499
    • (2014) Applied Soft Computing , vol.24 , pp. 494-499
    • Heo, J.1    Yang, J.Y.2
  • 36
    • 84920736250 scopus 로고    scopus 로고
    • Bankruptcy prediction using terminal failure processes
    • du Jardin P. Bankruptcy prediction using terminal failure processes European Journal of Operational Research 242 2015 286 303
    • (2015) European Journal of Operational Research , vol.242 , pp. 286-303
    • Du Jardin, P.1
  • 37
    • 84902156599 scopus 로고    scopus 로고
    • Comparing self-organizing maps
    • J.C.V.C. von der Malsburg, W. von Seelen, B. Sendhoff, Lecture Notes in Computer Science Springer, Berlin, Heidelberg
    • Kaski S., and Lagus K. Comparing self-organizing maps J.C.V.C. von der Malsburg, W. von Seelen, B. Sendhoff, International conference on artificial neural networks Lecture Notes in Computer Science 1112 1996 Springer, Berlin, Heidelberg 809 814
    • (1996) International Conference on Artificial Neural Networks , vol.1112 , pp. 809-814
    • Kaski, S.1    Lagus, K.2
  • 38
    • 71349086364 scopus 로고    scopus 로고
    • Ensemble with neural networks for bankruptcy prediction
    • Kim M.J., and Kang D.K. Ensemble with neural networks for bankruptcy prediction Expert Systems with Applications 37 2010 3373 3379
    • (2010) Expert Systems with Applications , vol.37 , pp. 3373-3379
    • Kim, M.J.1    Kang, D.K.2
  • 39
    • 84908053289 scopus 로고    scopus 로고
    • Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction
    • Kim M.J., Kang D.K., and Kim H.B. Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction Expert Systems with Applications 42 2013 1074 1082
    • (2013) Expert Systems with Applications , vol.42 , pp. 1074-1082
    • Kim, M.J.1    Kang, D.K.2    Kim, H.B.3
  • 40
    • 84886437226 scopus 로고    scopus 로고
    • Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models
    • Kim S.Y., and Upneja A. Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models Economic Modelling 36 2014 354 362
    • (2014) Economic Modelling , vol.36 , pp. 354-362
    • Kim, S.Y.1    Upneja, A.2
  • 43
    • 0036896235 scopus 로고    scopus 로고
    • An experimental study on diversity for bagging and boosting with linear classifiers
    • Kuncheva L.I., Skurichina M., and Duin R.P.W. An experimental study on diversity for bagging and boosting with linear classifiers Information Fusion 3 2002 245 258
    • (2002) Information Fusion , vol.3 , pp. 245-258
    • Kuncheva, L.I.1    Skurichina, M.2    Duin, R.P.W.3
  • 44
    • 33646258047 scopus 로고    scopus 로고
    • Random subspace method for multivariate feature selection
    • Lai C., Reinders M.J., and Wessels L. Random subspace method for multivariate feature selection Pattern Recognition Letters 27 2006 1067 1076
    • (2006) Pattern Recognition Letters , vol.27 , pp. 1067-1076
    • Lai, C.1    Reinders, M.J.2    Wessels, L.3
  • 47
    • 0013125561 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Leray P., and Gallinari P. Feature selection with neural networks Behaviormetrika 26 1998 145 166
    • (1998) Behaviormetrika , vol.26 , pp. 145-166
    • Leray, P.1    Gallinari, P.2
  • 48
    • 0030110988 scopus 로고    scopus 로고
    • Neural network prediction analysis: The bankruptcy case
    • Leshno M., and Spector Y. Neural network prediction analysis: the bankruptcy case Neurocomputing 10 1996 125 147
    • (1996) Neurocomputing , vol.10 , pp. 125-147
    • Leshno, M.1    Spector, Y.2
  • 49
    • 80051469759 scopus 로고    scopus 로고
    • The random subspace binary logit (RSBL) model for bankruptcy prediction
    • Li H., Lee Y.C., Zhou Y.C., and Sun J. The random subspace binary logit (RSBL) model for bankruptcy prediction Knowledge-Based Systems 24 2011 1380 1388
    • (2011) Knowledge-Based Systems , vol.24 , pp. 1380-1388
    • Li, H.1    Lee, Y.C.2    Zhou, Y.C.3    Sun, J.4
  • 50
    • 58349092749 scopus 로고    scopus 로고
    • Majority voting combination of multiple case-based reasoning for financial distress prediction
    • Li H., and Sun J. Majority voting combination of multiple case-based reasoning for financial distress prediction Expert Systems with Applications 36 2009 4363 4373
    • (2009) Expert Systems with Applications , vol.36 , pp. 4363-4373
    • Li, H.1    Sun, J.2
  • 51
    • 68249097414 scopus 로고    scopus 로고
    • Business failure prediction using hybrid2 case-based reasoning (H2CBR)
    • Li H., and Sun J. Business failure prediction using hybrid2 case-based reasoning (H2CBR) Computers and Operations Research 37 2010 137 151
    • (2010) Computers and Operations Research , vol.37 , pp. 137-151
    • Li, H.1    Sun, J.2
  • 52
    • 79960716960 scopus 로고    scopus 로고
    • Principal component case-based reasoning ensemble for business failure prediction
    • Li H., and Sun J. Principal component case-based reasoning ensemble for business failure prediction Information and Management 48 2011 220 227
    • (2011) Information and Management , vol.48 , pp. 220-227
    • Li, H.1    Sun, J.2
  • 53
    • 84889638990 scopus 로고    scopus 로고
    • An ensemble-based model for two-class imbalanced financial problem
    • Liao J.J., Shih C.H., Chen T.F., and Hsu M.F. An ensemble-based model for two-class imbalanced financial problem Economic Modelling 37 2014 175 183
    • (2014) Economic Modelling , vol.37 , pp. 175-183
    • Liao, J.J.1    Shih, C.H.2    Chen, T.F.3    Hsu, M.F.4
  • 55
    • 84859423392 scopus 로고    scopus 로고
    • Exploring the behaviour of base classifiers in credit scoring ensembles
    • Marques A.I., Garcia V., and Sanchez J.S. Exploring the behaviour of base classifiers in credit scoring ensembles Expert Systems with Applications 39 2012 10244 10250
    • (2012) Expert Systems with Applications , vol.39 , pp. 10244-10250
    • Marques, A.I.1    Garcia, V.2    Sanchez, J.S.3
  • 56
    • 0000731696 scopus 로고
    • An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study
    • Mensah Y.M. An examination of the stationarity of multivariate bankruptcy prediction models: a methodological study Journal of Accounting Research 22 1984 380 395
    • (1984) Journal of Accounting Research , vol.22 , pp. 380-395
    • Mensah, Y.M.1
  • 57
    • 84980220717 scopus 로고
    • Strategy-making in context: Ten empirical archetypes
    • Miller D., and Friesen P.H. Strategy-making in context: ten empirical archetypes Journal of Management Studies 14 1977 253 280
    • (1977) Journal of Management Studies , vol.14 , pp. 253-280
    • Miller, D.1    Friesen, P.H.2
  • 58
    • 0000228352 scopus 로고
    • A monte-carlo study of thirty internal criterion measures for cluster analysis
    • Milligan G.W. A monte-carlo study of thirty internal criterion measures for cluster analysis Psychometrika 46 1981 187 199
    • (1981) Psychometrika , vol.46 , pp. 187-199
    • Milligan, G.W.1
  • 59
    • 0030496109 scopus 로고    scopus 로고
    • Business failure pathways: Environmental stress and organizational response
    • Moulton W.N., and Thomas H. Business failure pathways: environmental stress and organizational response Journal of Management 22 1996 571 595
    • (1996) Journal of Management , vol.22 , pp. 571-595
    • Moulton, W.N.1    Thomas, H.2
  • 60
    • 70349137738 scopus 로고    scopus 로고
    • Improving bankruptcy prediction with hidden layer learning vector quantization
    • Neves J.C., and Vieira A. Improving bankruptcy prediction with hidden layer learning vector quantization European Accounting Review 15 2000 253 271
    • (2000) European Accounting Review , vol.15 , pp. 253-271
    • Neves, J.C.1    Vieira, A.2
  • 61
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Ohlson J.A. Financial ratios and the probabilistic prediction of bankruptcy Journal of Accounting Research 18 1980 109 131
    • (1980) Journal of Accounting Research , vol.18 , pp. 109-131
    • Ohlson, J.A.1
  • 62
    • 38049036817 scopus 로고    scopus 로고
    • Combining bagging and random subspaces to create better ensembles
    • Lecture Notes in Computer Science
    • Panov P., and Dzeroski S. Combining bagging and random subspaces to create better ensembles Advances in intelligent data analysis vii Lecture Notes in Computer Science 4723 2007
    • (2007) Advances in Intelligent Data Analysis VII , vol.4723
    • Panov, P.1    Dzeroski, S.2
  • 63
    • 32644462912 scopus 로고    scopus 로고
    • Predicting corporate financial distress: Reflections on choice-based sample bias
    • Platt H.D., and Platt M.B. Predicting corporate financial distress: reflections on choice-based sample bias Journal of Economics and Finance 26 2002 184 199
    • (2002) Journal of Economics and Finance , vol.26 , pp. 184-199
    • Platt, H.D.1    Platt, M.B.2
  • 65
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review
    • Ravi-Kumar P., and Ravi V. Bankruptcy prediction in banks and firms via statistical and intelligent techniques - a review European Journal of Operational Research 180 2007 1 28
    • (2007) European Journal of Operational Research , vol.180 , pp. 1-28
    • Ravi-Kumar, P.1    Ravi, V.2
  • 66
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability Machine Learning 5 1990 197 227
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 67
    • 0030190036 scopus 로고    scopus 로고
    • Self-organizing neural networks for financial diagnosis
    • Serrano-Cinca C. Self-organizing neural networks for financial diagnosis Decision Support Systems 17 1996 227 238
    • (1996) Decision Support Systems , vol.17 , pp. 227-238
    • Serrano-Cinca, C.1
  • 68
  • 69
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • Skurichina M., and Duin R.P.W. Bagging, boosting and the random subspace method for linear classifiers Pattern Analysis and Applications 5 2002 121 135
    • (2002) Pattern Analysis and Applications , vol.5 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 70
    • 79959399503 scopus 로고    scopus 로고
    • Benchmarking default prediction models: Pitfalls and remedies in model validation
    • Stein R.M. Benchmarking default prediction models: pitfalls and remedies in model validation Journal of Risk Model Validation 1 2007 77 113
    • (2007) Journal of Risk Model Validation , vol.1 , pp. 77-113
    • Stein, R.M.1
  • 71
    • 79953722212 scopus 로고    scopus 로고
    • AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies
    • Sun J., Jia M.Y., and Li H. AdaBoost ensemble for financial distress prediction: an empirical comparison with data from Chinese listed companies Expert Systems with Applications 38 2011 9305 9312
    • (2011) Expert Systems with Applications , vol.38 , pp. 9305-9312
    • Sun, J.1    Jia, M.Y.2    Li, H.3
  • 72
    • 60249097469 scopus 로고    scopus 로고
    • Financial distress prediction based on serial combination of multiple classifiers
    • Sun J., and Li H. Financial distress prediction based on serial combination of multiple classifiers Expert Systems with Applications 36 2009 8659 8666
    • (2009) Expert Systems with Applications , vol.36 , pp. 8659-8666
    • Sun, J.1    Li, H.2
  • 73
    • 84861845698 scopus 로고    scopus 로고
    • Financial distress prediction using support vector machines: Ensemble vs. Individual
    • Sun J., and Li H. Financial distress prediction using support vector machines: ensemble vs. individual Applied Soft Computing 12 2012 2254 2265
    • (2012) Applied Soft Computing , vol.12 , pp. 2254-2265
    • Sun, J.1    Li, H.2
  • 74
    • 84894901583 scopus 로고    scopus 로고
    • Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches
    • Sun J., Li H., Huang Q.-H., and He K.-Y. Predicting financial distress and corporate failure: a review from the state-of-the-art definitions, modeling, sampling, and featuring approaches Knowledge-Based Systems 57 2014 41 56
    • (2014) Knowledge-Based Systems , vol.57 , pp. 41-56
    • Sun, J.1    Li, H.2    Huang, Q.-H.3    He, K.-Y.4
  • 75
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun Y., Kamel M.S., Wong A.K., and Wang Y. Cost-sensitive boosting for classification of imbalanced data Pattern Recognition 40 2007 3358 3378
    • (2007) Pattern Recognition , vol.40 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.3    Wang, Y.4
  • 77
    • 84887039251 scopus 로고    scopus 로고
    • Combining cluster analysis with classifier ensembles to predict financial distress
    • Tsai C.F. Combining cluster analysis with classifier ensembles to predict financial distress Information Fusion 16 2014 46 58
    • (2014) Information Fusion , vol.16 , pp. 46-58
    • Tsai, C.F.1
  • 78
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • Tumer K., and Ghosh J. Analysis of decision boundaries in linearly combined neural classifiers Pattern Recognition 29 1996 341 348
    • (1996) Pattern Recognition , vol.29 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 80
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision application
    • West D., Dellana S., and Qian J. Neural network ensemble strategies for financial decision application Computers and Operations Research 32 2005 2543 2559
    • (2005) Computers and Operations Research , vol.32 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 81
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization Neural Networks 5 1992 241 259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 82
    • 84155189126 scopus 로고    scopus 로고
    • The prediction for listed companies' financial distress by using multiple prediction methods with rough set and Dempster-Shafer evidence theory
    • Xiao Z., Yang X., Pang Y., and Dang X. The prediction for listed companies' financial distress by using multiple prediction methods with rough set and Dempster-Shafer evidence theory Knowledge-Based Systems 26 2012 196 206
    • (2012) Knowledge-Based Systems , vol.26 , pp. 196-206
    • Xiao, Z.1    Yang, X.2    Pang, Y.3    Dang, X.4
  • 84
    • 49749141052 scopus 로고    scopus 로고
    • Lazy bagging for classifying imbalanced data
    • Zhu X.Q. Lazy bagging for classifying imbalanced data Ieee icdm 2007 2007 763 768
    • (2007) Ieee Icdm 2007 , pp. 763-768
    • Zhu, X.Q.1
  • 85
    • 0001953906 scopus 로고
    • Methodological issues related to the estimation of financial distress prediction models
    • Zmijewski M.E. Methodological issues related to the estimation of financial distress prediction models Journal of Accounting Research 22 1984 59 82
    • (1984) Journal of Accounting Research , vol.22 , pp. 59-82
    • Zmijewski, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.