-
1
-
-
41149115573
-
Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
-
Alfaro E., Garcia N., Games M., and Elizondo D. Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks Decision Support Systems 45 2008 110 122
-
(2008)
Decision Support Systems
, vol.45
, pp. 110-122
-
-
Alfaro, E.1
Garcia, N.2
Games, M.3
Elizondo, D.4
-
2
-
-
84980104458
-
Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
-
Altman E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy Journal of Finance 23 1968 589 609
-
(1968)
Journal of Finance
, vol.23
, pp. 589-609
-
-
Altman, E.I.1
-
3
-
-
0035391093
-
Bankruptcy prediction for credit risk using neural networks: A survey and new results
-
Atiya A. Bankruptcy prediction for credit risk using neural networks: a survey and new results IEEE Transactions on Neural Networks 7 2001 929 935
-
(2001)
IEEE Transactions on Neural Networks
, vol.7
, pp. 929-935
-
-
Atiya, A.1
-
4
-
-
84980201928
-
Bankruptcy prediction: An investigation of cash flow based models
-
Aziz A., Emanuel D.C., and Lawson G.C. Bankruptcy prediction: an investigation of cash flow based models Journal of Management Studies 25 1988 419 437
-
(1988)
Journal of Management Studies
, vol.25
, pp. 419-437
-
-
Aziz, A.1
Emanuel, D.C.2
Lawson, G.C.3
-
5
-
-
33144462955
-
35 years of studies on business failure: An overview of the classical statistical methodologies and their related problems
-
Balcaen S., and Ooghe H. 35 years of studies on business failure: an overview of the classical statistical methodologies and their related problems British Accounting Review 38 2006 63 93
-
(2006)
British Accounting Review
, vol.38
, pp. 63-93
-
-
Balcaen, S.1
Ooghe, H.2
-
7
-
-
0000721430
-
Detecting the risk of company failure at the banque de France
-
Bardos M. Detecting the risk of company failure at the banque de france Journal of Banking and Finance 22 1998 1405 1419
-
(1998)
Journal of Banking and Finance
, vol.22
, pp. 1405-1419
-
-
Bardos, M.1
-
8
-
-
33947728092
-
What is at stake in the construction and use of credit scores?
-
Bardos M. What is at stake in the construction and use of credit scores? Computational Economics 29 2007 159 172
-
(2007)
Computational Economics
, vol.29
, pp. 159-172
-
-
Bardos, M.1
-
9
-
-
80255123800
-
Does segmentation always improve model performance in credit scoring?
-
Bijak K., and Thomas L.C. Does segmentation always improve model performance in credit scoring? Expert Systems with Applications 39 2012 2433 2442
-
(2012)
Expert Systems with Applications
, vol.39
, pp. 2433-2442
-
-
Bijak, K.1
Thomas, L.C.2
-
10
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors Machine Learning 24 1996 123 140
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
14
-
-
53849090652
-
An integrative model with subject weight based on neural network learning for bankruptcy prediction
-
Cho S., Kim J., and Bae J.K. An integrative model with subject weight based on neural network learning for bankruptcy prediction Expert Systems with Applications 36 2009 403 410
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 403-410
-
-
Cho, S.1
Kim, J.2
Bae, J.K.3
-
15
-
-
84875706465
-
Application of hybrid case-based reasoning for enhanced performance in bankruptcy prediction
-
Chuang C.L. Application of hybrid case-based reasoning for enhanced performance in bankruptcy prediction Information Sciences 236 2013 174 185
-
(2013)
Information Sciences
, vol.236
, pp. 174-185
-
-
Chuang, C.L.1
-
17
-
-
0000070103
-
The aftermath of organizational decline: A longitudinal study of the strategic and managerial characteristics of declining firms
-
D'Aveni R.A. The aftermath of organizational decline: a longitudinal study of the strategic and managerial characteristics of declining firms Academy of Management Journal 32 1989 577 605
-
(1989)
Academy of Management Journal
, vol.32
, pp. 577-605
-
-
D'Aveni, R.A.1
-
19
-
-
0030143666
-
A survey of business failures with an emphasis on prediction methods and industrial applications
-
Dimitras A.I., Zanakis S., and Zopounidis C. A survey of business failures with an emphasis on prediction methods and industrial applications European Journal of Operational Research 90 1996 487 513
-
(1996)
European Journal of Operational Research
, vol.90
, pp. 487-513
-
-
Dimitras, A.I.1
Zanakis, S.2
Zopounidis, C.3
-
21
-
-
84881415129
-
Bankruptcy prediction for Russian companies: Application of combined classifiers
-
Fedorova E., Gilenko E., and Dovzhenko S. Bankruptcy prediction for Russian companies: application of combined classifiers Expert Systems with Applications 40 2013 7285 7293
-
(2013)
Expert Systems with Applications
, vol.40
, pp. 7285-7293
-
-
Fedorova, E.1
Gilenko, E.2
Dovzhenko, S.3
-
22
-
-
78650417769
-
Multiple classifier architectures and their application to credit risk assessment
-
Finlay S. Multiple classifier architectures and their application to credit risk assessment European Journal of Operational Research 210 2011 368 378
-
(2011)
European Journal of Operational Research
, vol.210
, pp. 368-378
-
-
Finlay, S.1
-
25
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting Annals of Statistics 28 2000 337 374
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
26
-
-
0035371148
-
An adaptive version of the boost by majority algorithm
-
Friedman J., Hastie T., and Tibshirani R. An adaptive version of the boost by majority algorithm Machine Learning 43 2001 293 318
-
(2001)
Machine Learning
, vol.43
, pp. 293-318
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
27
-
-
84944837333
-
Introducing recursive partitioning for financial classification: The case of financial distress
-
Frydman H., Altman E., and Kao D. Introducing recursive partitioning for financial classification: the case of financial distress Journal of Finance 40 1985 269 291
-
(1985)
Journal of Finance
, vol.40
, pp. 269-291
-
-
Frydman, H.1
Altman, E.2
Kao, D.3
-
30
-
-
85027952626
-
Prediction of financial distress: An empirical study of listed Chinese companies using data mining
-
Geng R., Bose I., and Chen X. Prediction of financial distress: an empirical study of listed Chinese companies using data mining European Journal of Operational Research 241 2015 236 247
-
(2015)
European Journal of Operational Research
, vol.241
, pp. 236-247
-
-
Geng, R.1
Bose, I.2
Chen, X.3
-
32
-
-
69549133517
-
Measuring classifier performance: A coherent alternative to the area under the ROC curve
-
Hand D.J. Measuring classifier performance: a coherent alternative to the area under the ROC curve Machine Learning 77 2009 103 123
-
(2009)
Machine Learning
, vol.77
, pp. 103-123
-
-
Hand, D.J.1
-
34
-
-
84907345291
-
AdaBoost based bankruptcy forecasting of Korean construction companies
-
Heo J., and Yang J.Y. AdaBoost based bankruptcy forecasting of korean construction companies Applied Soft Computing 24 2014 494 499
-
(2014)
Applied Soft Computing
, vol.24
, pp. 494-499
-
-
Heo, J.1
Yang, J.Y.2
-
36
-
-
84920736250
-
Bankruptcy prediction using terminal failure processes
-
du Jardin P. Bankruptcy prediction using terminal failure processes European Journal of Operational Research 242 2015 286 303
-
(2015)
European Journal of Operational Research
, vol.242
, pp. 286-303
-
-
Du Jardin, P.1
-
37
-
-
84902156599
-
Comparing self-organizing maps
-
J.C.V.C. von der Malsburg, W. von Seelen, B. Sendhoff, Lecture Notes in Computer Science Springer, Berlin, Heidelberg
-
Kaski S., and Lagus K. Comparing self-organizing maps J.C.V.C. von der Malsburg, W. von Seelen, B. Sendhoff, International conference on artificial neural networks Lecture Notes in Computer Science 1112 1996 Springer, Berlin, Heidelberg 809 814
-
(1996)
International Conference on Artificial Neural Networks
, vol.1112
, pp. 809-814
-
-
Kaski, S.1
Lagus, K.2
-
38
-
-
71349086364
-
Ensemble with neural networks for bankruptcy prediction
-
Kim M.J., and Kang D.K. Ensemble with neural networks for bankruptcy prediction Expert Systems with Applications 37 2010 3373 3379
-
(2010)
Expert Systems with Applications
, vol.37
, pp. 3373-3379
-
-
Kim, M.J.1
Kang, D.K.2
-
39
-
-
84908053289
-
Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction
-
Kim M.J., Kang D.K., and Kim H.B. Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction Expert Systems with Applications 42 2013 1074 1082
-
(2013)
Expert Systems with Applications
, vol.42
, pp. 1074-1082
-
-
Kim, M.J.1
Kang, D.K.2
Kim, H.B.3
-
40
-
-
84886437226
-
Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models
-
Kim S.Y., and Upneja A. Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models Economic Modelling 36 2014 354 362
-
(2014)
Economic Modelling
, vol.36
, pp. 354-362
-
-
Kim, S.Y.1
Upneja, A.2
-
43
-
-
0036896235
-
An experimental study on diversity for bagging and boosting with linear classifiers
-
Kuncheva L.I., Skurichina M., and Duin R.P.W. An experimental study on diversity for bagging and boosting with linear classifiers Information Fusion 3 2002 245 258
-
(2002)
Information Fusion
, vol.3
, pp. 245-258
-
-
Kuncheva, L.I.1
Skurichina, M.2
Duin, R.P.W.3
-
47
-
-
0013125561
-
Feature selection with neural networks
-
Leray P., and Gallinari P. Feature selection with neural networks Behaviormetrika 26 1998 145 166
-
(1998)
Behaviormetrika
, vol.26
, pp. 145-166
-
-
Leray, P.1
Gallinari, P.2
-
48
-
-
0030110988
-
Neural network prediction analysis: The bankruptcy case
-
Leshno M., and Spector Y. Neural network prediction analysis: the bankruptcy case Neurocomputing 10 1996 125 147
-
(1996)
Neurocomputing
, vol.10
, pp. 125-147
-
-
Leshno, M.1
Spector, Y.2
-
49
-
-
80051469759
-
The random subspace binary logit (RSBL) model for bankruptcy prediction
-
Li H., Lee Y.C., Zhou Y.C., and Sun J. The random subspace binary logit (RSBL) model for bankruptcy prediction Knowledge-Based Systems 24 2011 1380 1388
-
(2011)
Knowledge-Based Systems
, vol.24
, pp. 1380-1388
-
-
Li, H.1
Lee, Y.C.2
Zhou, Y.C.3
Sun, J.4
-
50
-
-
58349092749
-
Majority voting combination of multiple case-based reasoning for financial distress prediction
-
Li H., and Sun J. Majority voting combination of multiple case-based reasoning for financial distress prediction Expert Systems with Applications 36 2009 4363 4373
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 4363-4373
-
-
Li, H.1
Sun, J.2
-
51
-
-
68249097414
-
Business failure prediction using hybrid2 case-based reasoning (H2CBR)
-
Li H., and Sun J. Business failure prediction using hybrid2 case-based reasoning (H2CBR) Computers and Operations Research 37 2010 137 151
-
(2010)
Computers and Operations Research
, vol.37
, pp. 137-151
-
-
Li, H.1
Sun, J.2
-
52
-
-
79960716960
-
Principal component case-based reasoning ensemble for business failure prediction
-
Li H., and Sun J. Principal component case-based reasoning ensemble for business failure prediction Information and Management 48 2011 220 227
-
(2011)
Information and Management
, vol.48
, pp. 220-227
-
-
Li, H.1
Sun, J.2
-
53
-
-
84889638990
-
An ensemble-based model for two-class imbalanced financial problem
-
Liao J.J., Shih C.H., Chen T.F., and Hsu M.F. An ensemble-based model for two-class imbalanced financial problem Economic Modelling 37 2014 175 183
-
(2014)
Economic Modelling
, vol.37
, pp. 175-183
-
-
Liao, J.J.1
Shih, C.H.2
Chen, T.F.3
Hsu, M.F.4
-
55
-
-
84859423392
-
Exploring the behaviour of base classifiers in credit scoring ensembles
-
Marques A.I., Garcia V., and Sanchez J.S. Exploring the behaviour of base classifiers in credit scoring ensembles Expert Systems with Applications 39 2012 10244 10250
-
(2012)
Expert Systems with Applications
, vol.39
, pp. 10244-10250
-
-
Marques, A.I.1
Garcia, V.2
Sanchez, J.S.3
-
56
-
-
0000731696
-
An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study
-
Mensah Y.M. An examination of the stationarity of multivariate bankruptcy prediction models: a methodological study Journal of Accounting Research 22 1984 380 395
-
(1984)
Journal of Accounting Research
, vol.22
, pp. 380-395
-
-
Mensah, Y.M.1
-
57
-
-
84980220717
-
Strategy-making in context: Ten empirical archetypes
-
Miller D., and Friesen P.H. Strategy-making in context: ten empirical archetypes Journal of Management Studies 14 1977 253 280
-
(1977)
Journal of Management Studies
, vol.14
, pp. 253-280
-
-
Miller, D.1
Friesen, P.H.2
-
58
-
-
0000228352
-
A monte-carlo study of thirty internal criterion measures for cluster analysis
-
Milligan G.W. A monte-carlo study of thirty internal criterion measures for cluster analysis Psychometrika 46 1981 187 199
-
(1981)
Psychometrika
, vol.46
, pp. 187-199
-
-
Milligan, G.W.1
-
59
-
-
0030496109
-
Business failure pathways: Environmental stress and organizational response
-
Moulton W.N., and Thomas H. Business failure pathways: environmental stress and organizational response Journal of Management 22 1996 571 595
-
(1996)
Journal of Management
, vol.22
, pp. 571-595
-
-
Moulton, W.N.1
Thomas, H.2
-
60
-
-
70349137738
-
Improving bankruptcy prediction with hidden layer learning vector quantization
-
Neves J.C., and Vieira A. Improving bankruptcy prediction with hidden layer learning vector quantization European Accounting Review 15 2000 253 271
-
(2000)
European Accounting Review
, vol.15
, pp. 253-271
-
-
Neves, J.C.1
Vieira, A.2
-
61
-
-
0000666375
-
Financial ratios and the probabilistic prediction of bankruptcy
-
Ohlson J.A. Financial ratios and the probabilistic prediction of bankruptcy Journal of Accounting Research 18 1980 109 131
-
(1980)
Journal of Accounting Research
, vol.18
, pp. 109-131
-
-
Ohlson, J.A.1
-
62
-
-
38049036817
-
Combining bagging and random subspaces to create better ensembles
-
Lecture Notes in Computer Science
-
Panov P., and Dzeroski S. Combining bagging and random subspaces to create better ensembles Advances in intelligent data analysis vii Lecture Notes in Computer Science 4723 2007
-
(2007)
Advances in Intelligent Data Analysis VII
, vol.4723
-
-
Panov, P.1
Dzeroski, S.2
-
63
-
-
32644462912
-
Predicting corporate financial distress: Reflections on choice-based sample bias
-
Platt H.D., and Platt M.B. Predicting corporate financial distress: reflections on choice-based sample bias Journal of Economics and Finance 26 2002 184 199
-
(2002)
Journal of Economics and Finance
, vol.26
, pp. 184-199
-
-
Platt, H.D.1
Platt, M.B.2
-
65
-
-
33846314346
-
Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review
-
Ravi-Kumar P., and Ravi V. Bankruptcy prediction in banks and firms via statistical and intelligent techniques - a review European Journal of Operational Research 180 2007 1 28
-
(2007)
European Journal of Operational Research
, vol.180
, pp. 1-28
-
-
Ravi-Kumar, P.1
Ravi, V.2
-
66
-
-
0025448521
-
The strength of weak learnability
-
Schapire R.E. The strength of weak learnability Machine Learning 5 1990 197 227
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
67
-
-
0030190036
-
Self-organizing neural networks for financial diagnosis
-
Serrano-Cinca C. Self-organizing neural networks for financial diagnosis Decision Support Systems 17 1996 227 238
-
(1996)
Decision Support Systems
, vol.17
, pp. 227-238
-
-
Serrano-Cinca, C.1
-
69
-
-
0036080160
-
Bagging, boosting and the random subspace method for linear classifiers
-
Skurichina M., and Duin R.P.W. Bagging, boosting and the random subspace method for linear classifiers Pattern Analysis and Applications 5 2002 121 135
-
(2002)
Pattern Analysis and Applications
, vol.5
, pp. 121-135
-
-
Skurichina, M.1
Duin, R.P.W.2
-
70
-
-
79959399503
-
Benchmarking default prediction models: Pitfalls and remedies in model validation
-
Stein R.M. Benchmarking default prediction models: pitfalls and remedies in model validation Journal of Risk Model Validation 1 2007 77 113
-
(2007)
Journal of Risk Model Validation
, vol.1
, pp. 77-113
-
-
Stein, R.M.1
-
71
-
-
79953722212
-
AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies
-
Sun J., Jia M.Y., and Li H. AdaBoost ensemble for financial distress prediction: an empirical comparison with data from Chinese listed companies Expert Systems with Applications 38 2011 9305 9312
-
(2011)
Expert Systems with Applications
, vol.38
, pp. 9305-9312
-
-
Sun, J.1
Jia, M.Y.2
Li, H.3
-
72
-
-
60249097469
-
Financial distress prediction based on serial combination of multiple classifiers
-
Sun J., and Li H. Financial distress prediction based on serial combination of multiple classifiers Expert Systems with Applications 36 2009 8659 8666
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 8659-8666
-
-
Sun, J.1
Li, H.2
-
73
-
-
84861845698
-
Financial distress prediction using support vector machines: Ensemble vs. Individual
-
Sun J., and Li H. Financial distress prediction using support vector machines: ensemble vs. individual Applied Soft Computing 12 2012 2254 2265
-
(2012)
Applied Soft Computing
, vol.12
, pp. 2254-2265
-
-
Sun, J.1
Li, H.2
-
74
-
-
84894901583
-
Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches
-
Sun J., Li H., Huang Q.-H., and He K.-Y. Predicting financial distress and corporate failure: a review from the state-of-the-art definitions, modeling, sampling, and featuring approaches Knowledge-Based Systems 57 2014 41 56
-
(2014)
Knowledge-Based Systems
, vol.57
, pp. 41-56
-
-
Sun, J.1
Li, H.2
Huang, Q.-H.3
He, K.-Y.4
-
75
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Sun Y., Kamel M.S., Wong A.K., and Wang Y. Cost-sensitive boosting for classification of imbalanced data Pattern Recognition 40 2007 3358 3378
-
(2007)
Pattern Recognition
, vol.40
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.3
Wang, Y.4
-
77
-
-
84887039251
-
Combining cluster analysis with classifier ensembles to predict financial distress
-
Tsai C.F. Combining cluster analysis with classifier ensembles to predict financial distress Information Fusion 16 2014 46 58
-
(2014)
Information Fusion
, vol.16
, pp. 46-58
-
-
Tsai, C.F.1
-
78
-
-
0030085913
-
Analysis of decision boundaries in linearly combined neural classifiers
-
Tumer K., and Ghosh J. Analysis of decision boundaries in linearly combined neural classifiers Pattern Recognition 29 1996 341 348
-
(1996)
Pattern Recognition
, vol.29
, pp. 341-348
-
-
Tumer, K.1
Ghosh, J.2
-
80
-
-
13544268431
-
Neural network ensemble strategies for financial decision application
-
West D., Dellana S., and Qian J. Neural network ensemble strategies for financial decision application Computers and Operations Research 32 2005 2543 2559
-
(2005)
Computers and Operations Research
, vol.32
, pp. 2543-2559
-
-
West, D.1
Dellana, S.2
Qian, J.3
-
81
-
-
0026692226
-
Stacked generalization
-
Wolpert D.H. Stacked generalization Neural Networks 5 1992 241 259
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
82
-
-
84155189126
-
The prediction for listed companies' financial distress by using multiple prediction methods with rough set and Dempster-Shafer evidence theory
-
Xiao Z., Yang X., Pang Y., and Dang X. The prediction for listed companies' financial distress by using multiple prediction methods with rough set and Dempster-Shafer evidence theory Knowledge-Based Systems 26 2012 196 206
-
(2012)
Knowledge-Based Systems
, vol.26
, pp. 196-206
-
-
Xiao, Z.1
Yang, X.2
Pang, Y.3
Dang, X.4
-
84
-
-
49749141052
-
Lazy bagging for classifying imbalanced data
-
Zhu X.Q. Lazy bagging for classifying imbalanced data Ieee icdm 2007 2007 763 768
-
(2007)
Ieee Icdm 2007
, pp. 763-768
-
-
Zhu, X.Q.1
-
85
-
-
0001953906
-
Methodological issues related to the estimation of financial distress prediction models
-
Zmijewski M.E. Methodological issues related to the estimation of financial distress prediction models Journal of Accounting Research 22 1984 59 82
-
(1984)
Journal of Accounting Research
, vol.22
, pp. 59-82
-
-
Zmijewski, M.E.1
|