메뉴 건너뛰기




Volumn , Issue , 2016, Pages 433-441

Big data validation and quality assurance - Issuses, challenges, and needs

Author keywords

Big data quality assurance; Big data validation; Data validation; Quality assurance

Indexed keywords

QUALITY ASSURANCE; SYSTEMS ENGINEERING;

EID: 84978961960     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SOSE.2016.63     Document Type: Conference Paper
Times cited : (92)

References (28)
  • 2
    • 84879087611 scopus 로고    scopus 로고
    • Big data's big unintended consequences
    • M. R. Wigan and R. Clake, "Big Data's Big Unintended Consequences", IEEE Computer, Vol. 46, Issue 6, Pages:46-53, 2013.
    • (2013) IEEE Computer , vol.46 , Issue.6 , pp. 46-53
    • Wigan, M.R.1    Clake, R.2
  • 5
    • 84979066656 scopus 로고    scopus 로고
    • Enhanced extraction clinical data technique to improve data quality in clinical data warehouse
    • A. O. Mohammed, S. A. Talab, "Enhanced Extraction Clinical Data Technique to Improve Data Quality in Clinical Data Warehouse". International Journal of Database Theory and Application, Vol.8, Issue 3, Pages: 333-342, 2015.
    • (2015) International Journal of Database Theory and Application , vol.8 , Issue.3 , pp. 333-342
    • Mohammed, A.O.1    Talab, S.A.2
  • 6
    • 0024139181 scopus 로고
    • Integrity analysis: Methods for automating data quality assurance
    • M. I. Svanks, "Integrity analysis: Methods for automating data quality assurance". Information and Software Technology, Vol.30, Issue 10, Pages:595-605, 1988.
    • (1988) Information and Software Technology , vol.30 , Issue.10 , pp. 595-605
    • Svanks, M.I.1
  • 8
    • 84921502012 scopus 로고    scopus 로고
    • Data quality assurance for volunteered geographic information
    • Springer International Publishing
    • A.L.Ali and F.Schmid, "Data quality assurance for volunteered geographic information", Geographic Information Science. Springer International Publishing, Pages126-141,2014.
    • (2014) Geographic Information Science , pp. 126-141
    • Ali, A.L.1    Schmid, F.2
  • 9
    • 0028908255 scopus 로고
    • Data quality assurance, monitoring, and reporting
    • J. J. Gassman, et al. "Data quality assurance, monitoring, and reporting" Controlled clinical trials, Vol.16, Issue 2, Pages: 104-136,1995.
    • (1995) Controlled Clinical Trials , vol.16 , Issue.2 , pp. 104-136
    • Gassman, J.J.1
  • 13
    • 84978990384 scopus 로고    scopus 로고
    • EY
    • EY,"Big Data: changing the way businesses operate", Retrive at: http://www.ey.com/Publication/vwLUAssets /EY-Big-data: changing- the way businesses-operate/ $FILE /EY-Insights-on-GRC-Big-data.pdf.
    • Big Data: Changing the Way Businesses Operate
  • 15
    • 84901705764 scopus 로고    scopus 로고
    • Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications
    • B. T. Hazen, et al. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications", International Journal of Production Economics, 154: 72-80. 2014.
    • (2014) International Journal of Production Economics , vol.154 , pp. 72-80
    • Hazen, B.T.1
  • 21
    • 84959856136 scopus 로고    scopus 로고
    • Evaluating the quality of social media data in big data architecture
    • October 16
    • A. Immonen, P. Paakkonen, and E. Ovaska, "Evaluating the Quality of Social Media Data in Big Data Architecture". IEEE Access, Volume 3, Pages: 2028-2043 October 16, 2015.
    • (2015) IEEE Access , vol.3 , pp. 2028-2043
    • Immonen, A.1    Paakkonen, P.2    Ovaska, E.3
  • 23
    • 84930250078 scopus 로고    scopus 로고
    • Big data: Testing approach to overcome quality challenges
    • M. Gudipati, S. Rao, N. D.Mohan and N. K. Gajja,, "Big Data: Testing Approach to Overcome Quality Challenges", Inforsys Labs Briefings, Vol. 11, No. 1, pp. 65-73, 2013.
    • (2013) Forsys Labs Briefings , vol.11 , Issue.1 , pp. 65-73
    • Gudipati, M.1    Rao, S.2    Mohan, N.3    Gajja, N.K.4
  • 24
    • 84978966207 scopus 로고    scopus 로고
    • The data quality benchmark report-Experian Data Quality, 2016
    • The data quality benchmark report-Experian Data Quality, 2016.
  • 25
    • 84978953329 scopus 로고    scopus 로고
    • New Jersey Department of Environmental Protection, Data Quality Assessment and Data Usability Evaluation Technical Guidance, April 2014
    • New Jersey Department of Environmental Protection, Data Quality Assessment and Data Usability Evaluation Technical Guidance, April 2014.
  • 27
    • 85041437840 scopus 로고    scopus 로고
    • Challenges for mapreduce in big data
    • Anchorage, AK June
    • Katarina Grolinger et al, "Challenges for MapReduce in Big Data", IEEE World Congress on Services (SERVICES), Pages: 182-189, Anchorage, AK, June, 2014.
    • (2014) IEEE World Congress on Services (SERVICES) , pp. 182-189
    • Grolinger, K.1
  • 28
    • 84973293300 scopus 로고    scopus 로고
    • The challenges of data quality and data quality assessment in the big data era
    • L.Cai and Y. Zhu, "The Challenges of Data Quality and Data Quality Assessment in the Big Data Era". Data Science Journal, Vol.14, Issue 2, Pages:97-181, 2015.
    • (2015) Data Science Journal , vol.14 , Issue.2 , pp. 97-181
    • Cai, L.1    Zhu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.