-
2
-
-
80755189427
-
2 -production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer
-
2 -production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11 (2011), 4774–4779.
-
(2011)
Nano Lett.
, vol.11
, pp. 4774-4779
-
-
Zhang, J.1
Yu, J.2
Zhang, Y.3
Li, Q.4
Gong, J.R.5
-
4
-
-
84925248287
-
Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation
-
[4] Zhang, H., Guo, L.H., Zhao, L., Wan, B., Yang, Y., Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. J. Phys. Chem. Lett. 6 (2015), 958–963.
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 958-963
-
-
Zhang, H.1
Guo, L.H.2
Zhao, L.3
Wan, B.4
Yang, Y.5
-
8
-
-
84885339347
-
Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water
-
[8] Shiraishi, Y., Kanazawa, S., Tsukamoto, D., Shiro, A., Sugano, Y., Hirai, T., Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS Catal. 3 (2013), 2222–2227.
-
(2013)
ACS Catal.
, vol.3
, pp. 2222-2227
-
-
Shiraishi, Y.1
Kanazawa, S.2
Tsukamoto, D.3
Shiro, A.4
Sugano, Y.5
Hirai, T.6
-
9
-
-
84900551141
-
4 hybrid photocatalysts through Z-Scheme photocatalytic mechanism under visible light
-
4 hybrid photocatalysts through Z-Scheme photocatalytic mechanism under visible light. Ind. Eng. Chem. Res. 53 (2014), 8018–8025.
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, pp. 8018-8025
-
-
Katsumata, H.1
Sakai, T.2
Suzuki, T.3
Kaneco, S.4
-
13
-
-
84894236274
-
4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances
-
4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. Chem. Eng. J. 241 (2014), 344–351.
-
(2014)
Chem. Eng. J.
, vol.241
, pp. 344-351
-
-
Li, Z.1
Yang, S.2
Zhou, J.3
Li, D.4
Zhou, X.5
Ge, C.6
Fang, Y.7
-
16
-
-
34548153550
-
2 nanosystems
-
2 nanosystems. Nanotechnology, 18, 2007, 375709.
-
(2007)
Nanotechnology
, vol.18
, pp. 375709
-
-
Armelao, L.1
Barreca, D.2
Bottaro, G.3
Gasparotto, A.4
Maccato, C.5
Maragno, C.6
Tondello, E.7
Štangar, U.L.8
Bergant, M.9
Mahne, D.10
-
17
-
-
20744445032
-
2 supported nanoparticle catalysts by photodeposition
-
2 supported nanoparticle catalysts by photodeposition. Langmuir 21 (2005), 5588–5595.
-
(2005)
Langmuir
, vol.21
, pp. 5588-5595
-
-
Chan, S.C.1
Barteau, M.A.2
-
20
-
-
84904977779
-
2 anode for sodium-ion battery
-
2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 6 (2014), 11295–11301.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 11295-11301
-
-
Oh, S.M.1
Hwang, J.Y.2
Yoon, C.S.3
Lu, J.4
Amine, K.5
Belharouak, I.6
Sun, Y.K.7
-
22
-
-
80053030427
-
2 with dominant high-energy {001} facets: synthesis, properties, and applications
-
2 with dominant high-energy {001} facets: synthesis, properties, and applications. Chem. Mater. 23 (2011), 4085–4093.
-
(2011)
Chem. Mater.
, vol.23
, pp. 4085-4093
-
-
Liu, S.1
Yu, J.2
Jaroniec, M.3
-
24
-
-
66749116590
-
Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties
-
[24] Han, X., Kuang, Q., Jin, M., Xie, Z., Zheng, L., Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131 (2009), 3152–3153.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3152-3153
-
-
Han, X.1
Kuang, Q.2
Jin, M.3
Xie, Z.4
Zheng, L.5
-
25
-
-
84937879455
-
Ag-based semiconductor photocatalysts in environmental purification
-
[25] Li, J., Fang, W., Yu, C., Zhou, W., zhu, L., Xie, Y., Ag-based semiconductor photocatalysts in environmental purification. Appl. Surf. Sci. 358 (2015), 46–56.
-
(2015)
Appl. Surf. Sci.
, vol.358
, pp. 46-56
-
-
Li, J.1
Fang, W.2
Yu, C.3
Zhou, W.4
zhu, L.5
Xie, Y.6
-
26
-
-
84922083293
-
4 colloidal nanocrystal clusters with controllable shape and superior photocatalytic activity
-
4 colloidal nanocrystal clusters with controllable shape and superior photocatalytic activity. Nano Res. 8 (2014), 106–116.
-
(2014)
Nano Res.
, vol.8
, pp. 106-116
-
-
Pang, F.1
Liu, X.2
He, M.3
Ge, J.4
-
27
-
-
84948680790
-
4 -polyvinyl alcohol hybrid microcrystal with enhanced visible light photocatalytic activity
-
4 -polyvinyl alcohol hybrid microcrystal with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 356 (2015), 226–231.
-
(2015)
Appl. Surf. Sci.
, vol.356
, pp. 226-231
-
-
Sulaeman, U.1
Wu, X.2
Liu, B.3
Yin, S.4
Sato, T.5
-
28
-
-
84947783796
-
4 photocatalysts with enhanced photocatalytic activity under visible-light irradiation
-
4 photocatalysts with enhanced photocatalytic activity under visible-light irradiation. Appl. Surf. Sci. 356 (2015), 941–950.
-
(2015)
Appl. Surf. Sci.
, vol.356
, pp. 941-950
-
-
Li, X.1
Zheng, R.2
Luo, Q.3
Wang, D.4
An, J.5
Yin, R.6
Liu, Y.7
Wu, D.8
Han, X.9
-
29
-
-
84950123745
-
3 p–n heterojunction composites with enhanced photocatalytic activity under visible light
-
3 p–n heterojunction composites with enhanced photocatalytic activity under visible light. Chin. J. Catal. 36 (2015), 2186–2193.
-
(2015)
Chin. J. Catal.
, vol.36
, pp. 2186-2193
-
-
Fa, W.1
Wang, P.2
Yue, B.3
Yang, F.4
Li, D.5
Zheng, Z.6
-
30
-
-
84939797839
-
4 heterojunction with enhanced photocatalytic activity
-
4 heterojunction with enhanced photocatalytic activity. Catal. Commun. 71 (2015), 21–27.
-
(2015)
Catal. Commun.
, vol.71
, pp. 21-27
-
-
Lin, X.1
Guo, X.2
Shi, W.3
Guo, F.4
Che, G.5
Zhai, H.6
Yan, Y.7
Wang, Q.8
-
31
-
-
84924093671
-
4 /BiOBr heterojunction with high stability and enhanced visible-light-driven photocatalytic activity
-
4 /BiOBr heterojunction with high stability and enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 332 (2015), 419–429.
-
(2015)
Appl. Surf. Sci.
, vol.332
, pp. 419-429
-
-
Mehraj, O.1
Mir, N.A.2
Pirzada, B.M.3
Sabir, S.4
-
33
-
-
84901984800
-
4 photocatalyst with high photocatalytic water oxidation activity
-
4 photocatalyst with high photocatalytic water oxidation activity. J.Colloid Interface Sci. 430 (2014), 1–5.
-
(2014)
J.Colloid Interface Sci.
, vol.430
, pp. 1-5
-
-
Xie, Y.P.1
Wang, G.S.2
-
34
-
-
84944314907
-
4 nanotubes for enhanced photocatalytic activity under visible light
-
4 nanotubes for enhanced photocatalytic activity under visible light. Appl. Surf. Sci. 355 (2015), 615–622.
-
(2015)
Appl. Surf. Sci.
, vol.355
, pp. 615-622
-
-
Wan, J.1
Sun, L.2
Fan, J.3
Liu, E.4
Hu, X.5
Tang, C.6
Yin, Y.7
-
35
-
-
84944318275
-
2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties
-
2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties. Appl. Surf. Sci. 355 (2015), 921–929.
-
(2015)
Appl. Surf. Sci.
, vol.355
, pp. 921-929
-
-
Xie, J.1
Yang, Y.2
He, H.3
Cheng, D.4
Mao, M.5
Jiang, Q.6
Song, L.7
Xiong, J.8
-
36
-
-
77953912059
-
An orthophosphate semiconductor with photooxidation properties under visible-light irradiation
-
[36] Yi, Z., Ye, J., Kikugawa, N., Kako, T., Ouyang, S., Stuart-Williams, H., Yang, H., Cao, J., Luo, W., Li, Z., Liu, Y., Withers, R.L., An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 9 (2010), 559–564.
-
(2010)
Nat. Mater.
, vol.9
, pp. 559-564
-
-
Yi, Z.1
Ye, J.2
Kikugawa, N.3
Kako, T.4
Ouyang, S.5
Stuart-Williams, H.6
Yang, H.7
Cao, J.8
Luo, W.9
Li, Z.10
Liu, Y.11
Withers, R.L.12
-
40
-
-
84939188030
-
4 photocatalyst with surface oxygen vacancy
-
4 photocatalyst with surface oxygen vacancy. Nanoscale 7 (2015), 13943–13950.
-
(2015)
Nanoscale
, vol.7
, pp. 13943-13950
-
-
Wei, Z.1
Liu, Y.2
Wang, J.3
Zong, R.4
Yao, W.5
Wang, J.6
Zhu, Y.7
-
41
-
-
84872666725
-
4 -based plasmonic photocatalysts: enhanced photocatalytic performance by hybridization with graphene oxide
-
4 -based plasmonic photocatalysts: enhanced photocatalytic performance by hybridization with graphene oxide. Chin. Sci. Bull. 58 (2012), 84–91.
-
(2012)
Chin. Sci. Bull.
, vol.58
, pp. 84-91
-
-
Zhu, M.1
Chen, P.2
Liu, M.3
|