-
1
-
-
0018656345
-
Population biology of infectious diseases: Part I
-
[1] Anderson, R., May, R., Population biology of infectious diseases: Part I. Nature 280 (1979), 361–367.
-
(1979)
Nature
, vol.280
, pp. 361-367
-
-
Anderson, R.1
May, R.2
-
3
-
-
0018856876
-
Integral equation models for endemic infectious diseases
-
[3] Hethcote, H., Tudor, D., Integral equation models for endemic infectious diseases. J. Math. Biol. 9 (1980), 37–47.
-
(1980)
J. Math. Biol.
, vol.9
, pp. 37-47
-
-
Hethcote, H.1
Tudor, D.2
-
4
-
-
69049101951
-
Dynamics of a delayed epidemic model with non-monotonic incidence rate
-
[4] Huo, H., Ma, Z., Dynamics of a delayed epidemic model with non-monotonic incidence rate. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 459–468.
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, pp. 459-468
-
-
Huo, H.1
Ma, Z.2
-
5
-
-
70350722240
-
Complete global stability for an SIR epidemic model with delay-Distributed or discrete
-
[5] McCluskey, C., Complete global stability for an SIR epidemic model with delay-Distributed or discrete. Nonlinear Anal. RWA 11 (2010), 55–59.
-
(2010)
Nonlinear Anal. RWA
, vol.11
, pp. 55-59
-
-
McCluskey, C.1
-
6
-
-
34547134261
-
Global analysis of an epidemic model with nonmonotone incidence rate
-
[6] Xiao, D., Ruan, S., Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208 (2007), 419–429.
-
(2007)
Math. Biosci.
, vol.208
, pp. 419-429
-
-
Xiao, D.1
Ruan, S.2
-
7
-
-
67649304819
-
Stability of a delayed SIRS epidemic model with a nonlinear incidence rate
-
[7] Xu, R., Ma, Z., Stability of a delayed SIRS epidemic model with a nonlinear incidence rate. Chaos Solitons Fractals 41 (2009), 2319–2325.
-
(2009)
Chaos Solitons Fractals
, vol.41
, pp. 2319-2325
-
-
Xu, R.1
Ma, Z.2
-
8
-
-
64049103800
-
Global stability of a SIR epidemic model with nonlinear incidence rate and time delay
-
[8] Xu, R., Ma, Z., Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Anal. RWA 10 (2009), 3175–3189.
-
(2009)
Nonlinear Anal. RWA
, vol.10
, pp. 3175-3189
-
-
Xu, R.1
Ma, Z.2
-
9
-
-
78651240621
-
Global stability of a delayed SIRS epidemic model with a non-monotonic incidence rate
-
[9] Muroya, Y., Enatsu, Y., Nakata, Y., Global stability of a delayed SIRS epidemic model with a non-monotonic incidence rate. J. Math. Anal. Appl. 377 (2011), 1–14.
-
(2011)
J. Math. Anal. Appl.
, vol.377
, pp. 1-14
-
-
Muroya, Y.1
Enatsu, Y.2
Nakata, Y.3
-
10
-
-
83555172509
-
Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates
-
[10] Enatsu, Y., Messina, E., Muroya, Y., Nakata, Y., Russo, E., Vecchio, A., Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates. Appl. Math. Comput. 218 (2012), 5327–5336.
-
(2012)
Appl. Math. Comput.
, vol.218
, pp. 5327-5336
-
-
Enatsu, Y.1
Messina, E.2
Muroya, Y.3
Nakata, Y.4
Russo, E.5
Vecchio, A.6
-
11
-
-
10644240707
-
Global stability of an SIR Epidemic Model with Time Delay
-
[11] Ma, W., Song, M., Global stability of an SIR Epidemic Model with Time Delay. Appl. Math. Lett. 17 (2004), 1141–1145.
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 1141-1145
-
-
Ma, W.1
Song, M.2
-
12
-
-
40949093970
-
Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence
-
[12] Zhang, T., Teng, Z., Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence. Chaos Solitons Fractals 37 (2008), 1456–1468.
-
(2008)
Chaos Solitons Fractals
, vol.37
, pp. 1456-1468
-
-
Zhang, T.1
Teng, Z.2
-
13
-
-
0030318519
-
Analysis of an SEIRS epidemic model with two delays
-
[13] Cooke, K., Van Den Driessche, P., Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 35 (1996), 240–260.
-
(1996)
J. Math. Biol.
, vol.35
, pp. 240-260
-
-
Cooke, K.1
Van Den Driessche, P.2
-
14
-
-
13644275724
-
Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate
-
[14] Kyrychko, Y., Blyuss, K., Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal. 6 (2005), 495–507.
-
(2005)
Nonlinear Anal.
, vol.6
, pp. 495-507
-
-
Kyrychko, Y.1
Blyuss, K.2
-
15
-
-
0003743176
-
Delay Differential Equations with Applications in Population Dynamics
-
Academic Press New York
-
[15] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics. 1993, Academic Press, New York.
-
(1993)
-
-
Kuang, Y.1
-
16
-
-
0029190838
-
Global stability of an SIR epidemic model with time delays
-
[16] Beretta, E., Takeuchi, Y., Global stability of an SIR epidemic model with time delays. J. Math. Biol. 33 (1995), 250–260.
-
(1995)
J. Math. Biol.
, vol.33
, pp. 250-260
-
-
Beretta, E.1
Takeuchi, Y.2
-
17
-
-
0003100558
-
Stability analysis for a vector disease model
-
[17] Cooke, K., Stability analysis for a vector disease model. Rocky Mountain J. Math. 9 (1979), 31–42.
-
(1979)
Rocky Mountain J. Math.
, vol.9
, pp. 31-42
-
-
Cooke, K.1
-
18
-
-
0018041874
-
A generalization of the Kermack–Mckendrick deterministic epidemic model
-
[18] Capasso, V., Serio, G., A generalization of the Kermack–Mckendrick deterministic epidemic model. Math. Biosci. 42 (1978), 43–61.
-
(1978)
Math. Biosci.
, vol.42
, pp. 43-61
-
-
Capasso, V.1
Serio, G.2
-
19
-
-
34547655762
-
Global properties of infectious disease models with nonlinear incidence
-
[19] Korobeinikov, A., Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69 (2007), 1871–1886.
-
(2007)
Bull. Math. Biol.
, vol.69
, pp. 1871-1886
-
-
Korobeinikov, A.1
-
20
-
-
84932646468
-
The stochastic SEIR model before extinction: Computational approaches
-
[20] Artalejo, J., Economou, A., Lopez-Herrero, M., The stochastic SEIR model before extinction: Computational approaches. Appl. Math. Comput. 265 (2015), 1026–1043.
-
(2015)
Appl. Math. Comput.
, vol.265
, pp. 1026-1043
-
-
Artalejo, J.1
Economou, A.2
Lopez-Herrero, M.3
-
21
-
-
84883132489
-
Stability of an SEIR epidemic model with independent stochastic perturbations
-
[21] Witbooi, P., Stability of an SEIR epidemic model with independent stochastic perturbations. Physica A 392 (2013), 4928–4936.
-
(2013)
Physica A
, vol.392
, pp. 4928-4936
-
-
Witbooi, P.1
-
22
-
-
84455169402
-
The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence
-
[22] Yang, Q., Jiang, D., Shi, N., Ji, C., The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388 (2012), 248–271.
-
(2012)
J. Math. Anal. Appl.
, vol.388
, pp. 248-271
-
-
Yang, Q.1
Jiang, D.2
Shi, N.3
Ji, C.4
-
23
-
-
84900834468
-
Stochastic SEIR model with jumps
-
[23] Zhang, X., Wang, K., Stochastic SEIR model with jumps. Appl. Math. Comput. 239 (2014), 133–143.
-
(2014)
Appl. Math. Comput.
, vol.239
, pp. 133-143
-
-
Zhang, X.1
Wang, K.2
-
24
-
-
84904883586
-
Survival and stationary distribution of a SIR epidemic model with stochastic perturbations
-
[24] Zhou, Y., Zhang, W., Yuan, S., Survival and stationary distribution of a SIR epidemic model with stochastic perturbations. Appl. Math. Comput. 244 (2014), 118–131.
-
(2014)
Appl. Math. Comput.
, vol.244
, pp. 118-131
-
-
Zhou, Y.1
Zhang, W.2
Yuan, S.3
-
25
-
-
84894574300
-
Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation
-
[25] Lahrouz, A., Settati, A., Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation. Appl. Math. Comput. 233 (2014), 10–19.
-
(2014)
Appl. Math. Comput.
, vol.233
, pp. 10-19
-
-
Lahrouz, A.1
Settati, A.2
-
26
-
-
84872020070
-
Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations
-
[26] Yang, Q., Mao, X., Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations. Nonlinear Anal. RWA 14 (2013), 1434–1456.
-
(2013)
Nonlinear Anal. RWA
, vol.14
, pp. 1434-1456
-
-
Yang, Q.1
Mao, X.2
-
27
-
-
84923789423
-
Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence
-
[27] Liu, Q., Chen, Q., Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 428 (2015), 140–153.
-
(2015)
Physica A
, vol.428
, pp. 140-153
-
-
Liu, Q.1
Chen, Q.2
-
28
-
-
84899998465
-
Asymptotic stability of a two-group stochastic SEIR model with infinite delays
-
[28] Liu, M., Bai, C., Wang, K., Asymptotic stability of a two-group stochastic SEIR model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 3444–3453.
-
(2014)
Commun. Nonlinear Sci. Numer. Simul.
, vol.19
, pp. 3444-3453
-
-
Liu, M.1
Bai, C.2
Wang, K.3
-
29
-
-
84855233210
-
Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation
-
[29] Yuan, C., Jiang, D., O'Regan, D., Agarwal, R., Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2501–2516.
-
(2012)
Commun. Nonlinear Sci. Numer. Simul.
, vol.17
, pp. 2501-2516
-
-
Yuan, C.1
Jiang, D.2
O'Regan, D.3
Agarwal, R.4
-
30
-
-
0018662325
-
The influence of external real and white noise on the Lotka–Volterra model
-
[30] Arnold, L., Horsthemke, W., Stucki, J., The influence of external real and white noise on the Lotka–Volterra model. J. Biomed. 21 (1979), 451–471.
-
(1979)
J. Biomed.
, vol.21
, pp. 451-471
-
-
Arnold, L.1
Horsthemke, W.2
Stucki, J.3
-
31
-
-
84855868838
-
Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination
-
[31] Lahrouz, A., Omari, L., Kiouach, D., Belmaâti, A., Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination. Appl. Math. Comput. 218 (2012), 6519–6525.
-
(2012)
Appl. Math. Comput.
, vol.218
, pp. 6519-6525
-
-
Lahrouz, A.1
Omari, L.2
Kiouach, D.3
Belmaâti, A.4
-
32
-
-
47049084345
-
Asymptotic properties of hybrid diffusion systems
-
[32] Zhu, C., Yin, G., Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46 (2007), 1155–1179.
-
(2007)
SIAM J. Control Optim.
, vol.46
, pp. 1155-1179
-
-
Zhu, C.1
Yin, G.2
-
33
-
-
84887260929
-
Stationary distribution of a stochastic SIS epidemic model with vaccination
-
[33] Lin, Y., Jiang, D., Wang, S., Stationary distribution of a stochastic SIS epidemic model with vaccination. Physica A 394 (2014), 187–197.
-
(2014)
Physica A
, vol.394
, pp. 187-197
-
-
Lin, Y.1
Jiang, D.2
Wang, S.3
-
34
-
-
84903978036
-
The threshold of a stochastic SIS epidemic model with vaccination
-
[34] Zhao, Y., Jiang, D., The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243 (2014), 718–727.
-
(2014)
Appl. Math. Comput.
, vol.243
, pp. 718-727
-
-
Zhao, Y.1
Jiang, D.2
-
35
-
-
79955469778
-
Asymptotic behavior of global positive solution to a stochastic SIR model
-
[35] Jiang, D., Yu, J., Ji, C., Shi, N., Asymptotic behavior of global positive solution to a stochastic SIR model. Math. Comput. Modelling 54 (2011), 221–232.
-
(2011)
Math. Comput. Modelling
, vol.54
, pp. 221-232
-
-
Jiang, D.1
Yu, J.2
Ji, C.3
Shi, N.4
-
36
-
-
0003561266
-
Stochastic Differential Equations and Applications
-
Horwood Publishing Chichester
-
[36] Mao, X., Stochastic Differential Equations and Applications. 1997, Horwood Publishing, Chichester.
-
(1997)
-
-
Mao, X.1
|