메뉴 건너뛰기




Volumn 462, Issue , 2016, Pages 870-882

Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence

Author keywords

Lyapunov function; Nonlinear incidence; Stochastic SEIR epidemic model; Time delays

Indexed keywords

ASYMPTOTIC ANALYSIS; LYAPUNOV FUNCTIONS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; TIME DELAY;

EID: 84978863550     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2016.06.095     Document Type: Article
Times cited : (44)

References (36)
  • 1
    • 0018656345 scopus 로고
    • Population biology of infectious diseases: Part I
    • [1] Anderson, R., May, R., Population biology of infectious diseases: Part I. Nature 280 (1979), 361–367.
    • (1979) Nature , vol.280 , pp. 361-367
    • Anderson, R.1    May, R.2
  • 3
    • 0018856876 scopus 로고
    • Integral equation models for endemic infectious diseases
    • [3] Hethcote, H., Tudor, D., Integral equation models for endemic infectious diseases. J. Math. Biol. 9 (1980), 37–47.
    • (1980) J. Math. Biol. , vol.9 , pp. 37-47
    • Hethcote, H.1    Tudor, D.2
  • 4
    • 69049101951 scopus 로고    scopus 로고
    • Dynamics of a delayed epidemic model with non-monotonic incidence rate
    • [4] Huo, H., Ma, Z., Dynamics of a delayed epidemic model with non-monotonic incidence rate. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 459–468.
    • (2010) Commun. Nonlinear Sci. Numer. Simul. , vol.15 , pp. 459-468
    • Huo, H.1    Ma, Z.2
  • 5
    • 70350722240 scopus 로고    scopus 로고
    • Complete global stability for an SIR epidemic model with delay-Distributed or discrete
    • [5] McCluskey, C., Complete global stability for an SIR epidemic model with delay-Distributed or discrete. Nonlinear Anal. RWA 11 (2010), 55–59.
    • (2010) Nonlinear Anal. RWA , vol.11 , pp. 55-59
    • McCluskey, C.1
  • 6
    • 34547134261 scopus 로고    scopus 로고
    • Global analysis of an epidemic model with nonmonotone incidence rate
    • [6] Xiao, D., Ruan, S., Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208 (2007), 419–429.
    • (2007) Math. Biosci. , vol.208 , pp. 419-429
    • Xiao, D.1    Ruan, S.2
  • 7
    • 67649304819 scopus 로고    scopus 로고
    • Stability of a delayed SIRS epidemic model with a nonlinear incidence rate
    • [7] Xu, R., Ma, Z., Stability of a delayed SIRS epidemic model with a nonlinear incidence rate. Chaos Solitons Fractals 41 (2009), 2319–2325.
    • (2009) Chaos Solitons Fractals , vol.41 , pp. 2319-2325
    • Xu, R.1    Ma, Z.2
  • 8
    • 64049103800 scopus 로고    scopus 로고
    • Global stability of a SIR epidemic model with nonlinear incidence rate and time delay
    • [8] Xu, R., Ma, Z., Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Anal. RWA 10 (2009), 3175–3189.
    • (2009) Nonlinear Anal. RWA , vol.10 , pp. 3175-3189
    • Xu, R.1    Ma, Z.2
  • 9
    • 78651240621 scopus 로고    scopus 로고
    • Global stability of a delayed SIRS epidemic model with a non-monotonic incidence rate
    • [9] Muroya, Y., Enatsu, Y., Nakata, Y., Global stability of a delayed SIRS epidemic model with a non-monotonic incidence rate. J. Math. Anal. Appl. 377 (2011), 1–14.
    • (2011) J. Math. Anal. Appl. , vol.377 , pp. 1-14
    • Muroya, Y.1    Enatsu, Y.2    Nakata, Y.3
  • 10
    • 83555172509 scopus 로고    scopus 로고
    • Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates
    • [10] Enatsu, Y., Messina, E., Muroya, Y., Nakata, Y., Russo, E., Vecchio, A., Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates. Appl. Math. Comput. 218 (2012), 5327–5336.
    • (2012) Appl. Math. Comput. , vol.218 , pp. 5327-5336
    • Enatsu, Y.1    Messina, E.2    Muroya, Y.3    Nakata, Y.4    Russo, E.5    Vecchio, A.6
  • 11
    • 10644240707 scopus 로고    scopus 로고
    • Global stability of an SIR Epidemic Model with Time Delay
    • [11] Ma, W., Song, M., Global stability of an SIR Epidemic Model with Time Delay. Appl. Math. Lett. 17 (2004), 1141–1145.
    • (2004) Appl. Math. Lett. , vol.17 , pp. 1141-1145
    • Ma, W.1    Song, M.2
  • 12
    • 40949093970 scopus 로고    scopus 로고
    • Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence
    • [12] Zhang, T., Teng, Z., Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence. Chaos Solitons Fractals 37 (2008), 1456–1468.
    • (2008) Chaos Solitons Fractals , vol.37 , pp. 1456-1468
    • Zhang, T.1    Teng, Z.2
  • 13
    • 0030318519 scopus 로고    scopus 로고
    • Analysis of an SEIRS epidemic model with two delays
    • [13] Cooke, K., Van Den Driessche, P., Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 35 (1996), 240–260.
    • (1996) J. Math. Biol. , vol.35 , pp. 240-260
    • Cooke, K.1    Van Den Driessche, P.2
  • 14
    • 13644275724 scopus 로고    scopus 로고
    • Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate
    • [14] Kyrychko, Y., Blyuss, K., Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal. 6 (2005), 495–507.
    • (2005) Nonlinear Anal. , vol.6 , pp. 495-507
    • Kyrychko, Y.1    Blyuss, K.2
  • 15
    • 0003743176 scopus 로고
    • Delay Differential Equations with Applications in Population Dynamics
    • Academic Press New York
    • [15] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics. 1993, Academic Press, New York.
    • (1993)
    • Kuang, Y.1
  • 16
    • 0029190838 scopus 로고
    • Global stability of an SIR epidemic model with time delays
    • [16] Beretta, E., Takeuchi, Y., Global stability of an SIR epidemic model with time delays. J. Math. Biol. 33 (1995), 250–260.
    • (1995) J. Math. Biol. , vol.33 , pp. 250-260
    • Beretta, E.1    Takeuchi, Y.2
  • 17
    • 0003100558 scopus 로고
    • Stability analysis for a vector disease model
    • [17] Cooke, K., Stability analysis for a vector disease model. Rocky Mountain J. Math. 9 (1979), 31–42.
    • (1979) Rocky Mountain J. Math. , vol.9 , pp. 31-42
    • Cooke, K.1
  • 18
    • 0018041874 scopus 로고
    • A generalization of the Kermack–Mckendrick deterministic epidemic model
    • [18] Capasso, V., Serio, G., A generalization of the Kermack–Mckendrick deterministic epidemic model. Math. Biosci. 42 (1978), 43–61.
    • (1978) Math. Biosci. , vol.42 , pp. 43-61
    • Capasso, V.1    Serio, G.2
  • 19
    • 34547655762 scopus 로고    scopus 로고
    • Global properties of infectious disease models with nonlinear incidence
    • [19] Korobeinikov, A., Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69 (2007), 1871–1886.
    • (2007) Bull. Math. Biol. , vol.69 , pp. 1871-1886
    • Korobeinikov, A.1
  • 20
    • 84932646468 scopus 로고    scopus 로고
    • The stochastic SEIR model before extinction: Computational approaches
    • [20] Artalejo, J., Economou, A., Lopez-Herrero, M., The stochastic SEIR model before extinction: Computational approaches. Appl. Math. Comput. 265 (2015), 1026–1043.
    • (2015) Appl. Math. Comput. , vol.265 , pp. 1026-1043
    • Artalejo, J.1    Economou, A.2    Lopez-Herrero, M.3
  • 21
    • 84883132489 scopus 로고    scopus 로고
    • Stability of an SEIR epidemic model with independent stochastic perturbations
    • [21] Witbooi, P., Stability of an SEIR epidemic model with independent stochastic perturbations. Physica A 392 (2013), 4928–4936.
    • (2013) Physica A , vol.392 , pp. 4928-4936
    • Witbooi, P.1
  • 22
    • 84455169402 scopus 로고    scopus 로고
    • The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence
    • [22] Yang, Q., Jiang, D., Shi, N., Ji, C., The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388 (2012), 248–271.
    • (2012) J. Math. Anal. Appl. , vol.388 , pp. 248-271
    • Yang, Q.1    Jiang, D.2    Shi, N.3    Ji, C.4
  • 23
    • 84900834468 scopus 로고    scopus 로고
    • Stochastic SEIR model with jumps
    • [23] Zhang, X., Wang, K., Stochastic SEIR model with jumps. Appl. Math. Comput. 239 (2014), 133–143.
    • (2014) Appl. Math. Comput. , vol.239 , pp. 133-143
    • Zhang, X.1    Wang, K.2
  • 24
    • 84904883586 scopus 로고    scopus 로고
    • Survival and stationary distribution of a SIR epidemic model with stochastic perturbations
    • [24] Zhou, Y., Zhang, W., Yuan, S., Survival and stationary distribution of a SIR epidemic model with stochastic perturbations. Appl. Math. Comput. 244 (2014), 118–131.
    • (2014) Appl. Math. Comput. , vol.244 , pp. 118-131
    • Zhou, Y.1    Zhang, W.2    Yuan, S.3
  • 25
    • 84894574300 scopus 로고    scopus 로고
    • Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation
    • [25] Lahrouz, A., Settati, A., Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation. Appl. Math. Comput. 233 (2014), 10–19.
    • (2014) Appl. Math. Comput. , vol.233 , pp. 10-19
    • Lahrouz, A.1    Settati, A.2
  • 26
    • 84872020070 scopus 로고    scopus 로고
    • Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations
    • [26] Yang, Q., Mao, X., Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations. Nonlinear Anal. RWA 14 (2013), 1434–1456.
    • (2013) Nonlinear Anal. RWA , vol.14 , pp. 1434-1456
    • Yang, Q.1    Mao, X.2
  • 27
    • 84923789423 scopus 로고    scopus 로고
    • Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence
    • [27] Liu, Q., Chen, Q., Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 428 (2015), 140–153.
    • (2015) Physica A , vol.428 , pp. 140-153
    • Liu, Q.1    Chen, Q.2
  • 28
    • 84899998465 scopus 로고    scopus 로고
    • Asymptotic stability of a two-group stochastic SEIR model with infinite delays
    • [28] Liu, M., Bai, C., Wang, K., Asymptotic stability of a two-group stochastic SEIR model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 3444–3453.
    • (2014) Commun. Nonlinear Sci. Numer. Simul. , vol.19 , pp. 3444-3453
    • Liu, M.1    Bai, C.2    Wang, K.3
  • 29
    • 84855233210 scopus 로고    scopus 로고
    • Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation
    • [29] Yuan, C., Jiang, D., O'Regan, D., Agarwal, R., Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2501–2516.
    • (2012) Commun. Nonlinear Sci. Numer. Simul. , vol.17 , pp. 2501-2516
    • Yuan, C.1    Jiang, D.2    O'Regan, D.3    Agarwal, R.4
  • 30
    • 0018662325 scopus 로고
    • The influence of external real and white noise on the Lotka–Volterra model
    • [30] Arnold, L., Horsthemke, W., Stucki, J., The influence of external real and white noise on the Lotka–Volterra model. J. Biomed. 21 (1979), 451–471.
    • (1979) J. Biomed. , vol.21 , pp. 451-471
    • Arnold, L.1    Horsthemke, W.2    Stucki, J.3
  • 31
    • 84855868838 scopus 로고    scopus 로고
    • Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination
    • [31] Lahrouz, A., Omari, L., Kiouach, D., Belmaâti, A., Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination. Appl. Math. Comput. 218 (2012), 6519–6525.
    • (2012) Appl. Math. Comput. , vol.218 , pp. 6519-6525
    • Lahrouz, A.1    Omari, L.2    Kiouach, D.3    Belmaâti, A.4
  • 32
    • 47049084345 scopus 로고    scopus 로고
    • Asymptotic properties of hybrid diffusion systems
    • [32] Zhu, C., Yin, G., Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46 (2007), 1155–1179.
    • (2007) SIAM J. Control Optim. , vol.46 , pp. 1155-1179
    • Zhu, C.1    Yin, G.2
  • 33
    • 84887260929 scopus 로고    scopus 로고
    • Stationary distribution of a stochastic SIS epidemic model with vaccination
    • [33] Lin, Y., Jiang, D., Wang, S., Stationary distribution of a stochastic SIS epidemic model with vaccination. Physica A 394 (2014), 187–197.
    • (2014) Physica A , vol.394 , pp. 187-197
    • Lin, Y.1    Jiang, D.2    Wang, S.3
  • 34
    • 84903978036 scopus 로고    scopus 로고
    • The threshold of a stochastic SIS epidemic model with vaccination
    • [34] Zhao, Y., Jiang, D., The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243 (2014), 718–727.
    • (2014) Appl. Math. Comput. , vol.243 , pp. 718-727
    • Zhao, Y.1    Jiang, D.2
  • 35
    • 79955469778 scopus 로고    scopus 로고
    • Asymptotic behavior of global positive solution to a stochastic SIR model
    • [35] Jiang, D., Yu, J., Ji, C., Shi, N., Asymptotic behavior of global positive solution to a stochastic SIR model. Math. Comput. Modelling 54 (2011), 221–232.
    • (2011) Math. Comput. Modelling , vol.54 , pp. 221-232
    • Jiang, D.1    Yu, J.2    Ji, C.3    Shi, N.4
  • 36
    • 0003561266 scopus 로고    scopus 로고
    • Stochastic Differential Equations and Applications
    • Horwood Publishing Chichester
    • [36] Mao, X., Stochastic Differential Equations and Applications. 1997, Horwood Publishing, Chichester.
    • (1997)
    • Mao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.