-
1
-
-
84873825623
-
The Li-Ion Rechargeable Battery: A Perspective
-
[1] Goodenough, J.B., Park, K.-S., The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 135 (2013), 1167–1176.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 1167-1176
-
-
Goodenough, J.B.1
Park, K.-S.2
-
2
-
-
84924748838
-
Recent Achievements on Inorganic Electrode Materials for Lithium-Ion Batteries
-
[2] Croguennec, L., Palacin, M.R., Recent Achievements on Inorganic Electrode Materials for Lithium-Ion Batteries. J. Am. Chem. Soc. 137 (2015), 3140–3156.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 3140-3156
-
-
Croguennec, L.1
Palacin, M.R.2
-
3
-
-
84958072117
-
Engineered Nanomembranes for Smart Energy Storage Devices
-
[3] Wang, X., Chen, Y., Schmidt, O.G., Yan, C., Engineered Nanomembranes for Smart Energy Storage Devices. Chem. Soc. Rev. 45 (2016), 1308–1330.
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 1308-1330
-
-
Wang, X.1
Chen, Y.2
Schmidt, O.G.3
Yan, C.4
-
4
-
-
84867361554
-
Titanium-Based Anode Materials for Safe Lithium-Ion Batteries
-
[4] Chen, Z., Belharouak, I., Sun, Y., Amine, K., Titanium-Based Anode Materials for Safe Lithium-Ion Batteries. Adv. Funct. Mater. 23 (2013), 959–969.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 959-969
-
-
Chen, Z.1
Belharouak, I.2
Sun, Y.3
Amine, K.4
-
5
-
-
84864605775
-
Two-Dimensional Nanoarchitectures for Lithium Storage
-
[5] Liu, J., Liu, X., Two-Dimensional Nanoarchitectures for Lithium Storage. Adv. Mater. 24 (2012), 4097–4111.
-
(2012)
Adv. Mater.
, vol.24
, pp. 4097-4111
-
-
Liu, J.1
Liu, X.2
-
6
-
-
84947716352
-
12 Nanosheet Arrays with 3D Interconnected Architecture as Anodes for High Performance Hybrid Supercapacitors
-
12 Nanosheet Arrays with 3D Interconnected Architecture as Anodes for High Performance Hybrid Supercapacitors. J. Mater. Chem. A 3 (2015), 23570–23576.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 23570-23576
-
-
Gao, L.1
Huang, D.2
Shen, Y.3
Wang, M.4
-
8
-
-
84948672888
-
2 Nanosheet Arrays as Binder-Free Anode Materials with Enhanced Performance for Lithium Ion Batteries
-
2 Nanosheet Arrays as Binder-Free Anode Materials with Enhanced Performance for Lithium Ion Batteries. RSC Adv. 5 (2015), 101247–101256.
-
(2015)
RSC Adv.
, vol.5
, pp. 101247-101256
-
-
Li, G.1
Hu, H.2
Zhu, Q.3
Yu, Y.4
-
9
-
-
84941137101
-
Carbon Nanofibers Decorated with Molybdenum Disulfide Nanosheets: Synergistic Lithium Storage and Enhanced Electrochemical Performance
-
[9] Zhou, F., Xin, S., Liang, H., Song, L., Yu, S., Carbon Nanofibers Decorated with Molybdenum Disulfide Nanosheets: Synergistic Lithium Storage and Enhanced Electrochemical Performance. Angew. Chem. Int. Ed. 53 (2014), 11552–11556.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 11552-11556
-
-
Zhou, F.1
Xin, S.2
Liang, H.3
Song, L.4
Yu, S.5
-
10
-
-
84886099147
-
2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries
-
2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries. Small 9 (2013), 3433–3438.
-
(2013)
Small
, vol.9
, pp. 3433-3438
-
-
Cao, X.1
Shi, Y.2
Shi, W.3
Rui, X.4
Yan, Q.5
Kong, J.6
Zhang, H.7
-
11
-
-
79954441674
-
2/Amorphous Carbon Composites with High Capacity and Excellent Stability as Anode Materials for Lithium Ion Batteries
-
2/Amorphous Carbon Composites with High Capacity and Excellent Stability as Anode Materials for Lithium Ion Batteries. J. Mater. Chem. 21 (2011), 6251–6257.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 6251-6257
-
-
Chang, K.1
Chen, W.2
Ma, L.3
Li, H.4
Li, H.5
Huang, F.6
Xu, Z.7
Zhang, Q.8
Lee, J.9
-
14
-
-
84924595339
-
2 as an Anode Material for Excellent Performance Lithium-Ion Batteries
-
2 as an Anode Material for Excellent Performance Lithium-Ion Batteries. J. Mater. Chem. A 3 (2015), 6392–6401.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 6392-6401
-
-
Guo, B.1
Yu, K.2
Fu, H.3
Hua, Q.4
Qi, R.5
Li, H.6
Song, H.7
Guo, S.8
Zhu, Z.9
-
15
-
-
84937913963
-
2 Nanofibers for Ultrastable Lithium Ion Battery Anodes
-
2 Nanofibers for Ultrastable Lithium Ion Battery Anodes. ChemElectroChem 2 (2015), 374–381.
-
(2015)
ChemElectroChem
, vol.2
, pp. 374-381
-
-
Zhuang, W.1
Li, L.2
Zhu, J.3
An, R.4
Lu, L.5
Lu, X.6
Wu, X.7
Ying, H.8
-
16
-
-
84937828571
-
2 Nanosheet Core–Shell Nanostructures for Stable and High-Performance Lithium-Ion Batteries
-
2 Nanosheet Core–Shell Nanostructures for Stable and High-Performance Lithium-Ion Batteries. Nanoscale 7 (2015), 12895–12905.
-
(2015)
Nanoscale
, vol.7
, pp. 12895-12905
-
-
Chen, B.1
Zhao, N.2
Guo, L.3
He, F.4
Shi, C.5
He, C.6
Lia, J.7
Liu, E.8
-
17
-
-
84988222485
-
2/Polyaniline Hybrid Composite with Enhanced Performance for Lithium-Ion Battery Anodes
-
2/Polyaniline Hybrid Composite with Enhanced Performance for Lithium-Ion Battery Anodes. Electrochim. Acta 167 (2015), 132–138.
-
(2015)
Electrochim. Acta
, vol.167
, pp. 132-138
-
-
Liu, H.1
Zhang, F.2
Li, W.3
Zhang, X.4
Lee, C.5
Wan, W.6
Tang, Y.7
-
18
-
-
84884195796
-
Synthesis of Carbon-Based Nano and Micro Materials by High Temperature and High Pressure
-
[18] Bazargan, A., Yan, Y., Hui, C., McKay, G., Review, A., Synthesis of Carbon-Based Nano and Micro Materials by High Temperature and High Pressure. Ind. Eng. Chem. Res. 52 (2013), 12689–12702.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 12689-12702
-
-
Bazargan, A.1
Yan, Y.2
Hui, C.3
McKay, G.4
Review, A.5
-
19
-
-
84960079287
-
Natural Integrated Carbon Architecture for Rechargeable Lithium–Sulfur Batteries
-
[19] Xu, J., Zhou, K., Chen, F., Chen, W., Wei, X., Liu, X., Liu, J., Natural Integrated Carbon Architecture for Rechargeable Lithium–Sulfur Batteries. ACS Sustainable Chem. Eng. 4 (2016), 666–670.
-
(2016)
ACS Sustainable Chem. Eng.
, vol.4
, pp. 666-670
-
-
Xu, J.1
Zhou, K.2
Chen, F.3
Chen, W.4
Wei, X.5
Liu, X.6
Liu, J.7
-
20
-
-
84898621376
-
2 Mesoporous Microspheres with Nanostructures as High-Performance Anode Materials in Lithium-Ion Batteries
-
2 Mesoporous Microspheres with Nanostructures as High-Performance Anode Materials in Lithium-Ion Batteries. Nanotechnology, 25, 2014, 175402.
-
(2014)
Nanotechnology
, vol.25
, pp. 175402
-
-
Gao, L.1
Liu, R.2
Hu, H.3
Li, G.4
Yu, Y.5
-
22
-
-
85078875224
-
2 Ultrathin Nanobelts Derived from Room-Temperature-Synthesized Titanates for Fast and Safe Lithium Storage
-
2 Ultrathin Nanobelts Derived from Room-Temperature-Synthesized Titanates for Fast and Safe Lithium Storage. Sci. Rep., 5, 2015, 11804.
-
(2015)
Sci. Rep.
, vol.5
, pp. 11804
-
-
Wen, W.1
Wu, J.2
Jiang, Y.3
Yu, S.4
Bai, J.5
Cao, M.6
Cui, J.7
-
23
-
-
84874036664
-
2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries
-
2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries. Adv. Mater. 25 (2013), 1180–1184.
-
(2013)
Adv. Mater.
, vol.25
, pp. 1180-1184
-
-
Yang, L.1
Wang, S.2
Mao, J.3
Deng, J.4
Gao, Q.5
Tang, Y.6
Schmidt, O.G.7
-
24
-
-
84867971681
-
Perspectives on Raman Spectroscopy of Graphene-Based Systems: from the Perfect Two-Dimensional Surface to Charcoal
-
[24] Jorio, A., Cancado, L.G., Perspectives on Raman Spectroscopy of Graphene-Based Systems: from the Perfect Two-Dimensional Surface to Charcoal. Phys. Chem. Chem. Phys. 14 (2012), 15246–15256.
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 15246-15256
-
-
Jorio, A.1
Cancado, L.G.2
-
25
-
-
84900821269
-
Characterization of Carbon Nanoparticles in Thin-Film Nanocomposites by Confocal Raman Microscopy
-
[25] Enríquez, E., De la Rubia, M.A., Del Campo, A., Marcos, F.R., Fernández, J.F., Characterization of Carbon Nanoparticles in Thin-Film Nanocomposites by Confocal Raman Microscopy. J. Phys. Chem. C 118 (2014), 10488–10494.
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 10488-10494
-
-
Enríquez, E.1
De la Rubia, M.A.2
Del Campo, A.3
Marcos, F.R.4
Fernández, J.F.5
-
28
-
-
84950312516
-
2 Nanocages as a Lithium Ion Battery Anode Material
-
2 Nanocages as a Lithium Ion Battery Anode Material. J. Mater. Chem. A 4 (2016), 51–58.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 51-58
-
-
Zuo, X.1
Chang, K.2
Zhao, J.3
Xie, Z.4
Tang, H.5
Lia, B.6
Chang, Z.7
-
29
-
-
84929341894
-
Well-Constructed Single-Layer Molybdenum Disulfide Nanorose Cross-Linked by Three Dimensional-Reduced Graphene Oxide Network for Superior Water Splitting and Lithium Storage Property
-
[29] Zhao, Y., Kuai, L., Liu, Y., Wang, P., Arandiyan, H., Cao, S., Zhang, J., Li, F., Wang, Q., Geng, B., Sun, H., Well-Constructed Single-Layer Molybdenum Disulfide Nanorose Cross-Linked by Three Dimensional-Reduced Graphene Oxide Network for Superior Water Splitting and Lithium Storage Property. Sci. Rep., 5, 2015, 8722.
-
(2015)
Sci. Rep.
, vol.5
, pp. 8722
-
-
Zhao, Y.1
Kuai, L.2
Liu, Y.3
Wang, P.4
Arandiyan, H.5
Cao, S.6
Zhang, J.7
Li, F.8
Wang, Q.9
Geng, B.10
Sun, H.11
-
30
-
-
84899785664
-
2 Flower-like Nanostructure with Self-Assembled Nanosheets as High-Performance Lithium-Ion Battery Anodes
-
2 Flower-like Nanostructure with Self-Assembled Nanosheets as High-Performance Lithium-Ion Battery Anodes. J. Mater. Chem. A 2 (2014), 7862–7872.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 7862-7872
-
-
Hu, S.1
Chen, W.2
Zhou, J.3
Yin, F.4
Uchaker, E.5
Zhang, Q.6
Cao, G.7
-
31
-
-
79954568285
-
XPS Analysis of Combustion Aerosols for Chemical Composition Surface Chemistry, and Carbon Chemical State
-
[31] Vander Wal, R.L., Bryg, V.M., Hays, M.D., XPS Analysis of Combustion Aerosols for Chemical Composition Surface Chemistry, and Carbon Chemical State. Anal. Chem. 83 (2011), 1924–1930.
-
(2011)
Anal. Chem.
, vol.83
, pp. 1924-1930
-
-
Vander Wal, R.L.1
Bryg, V.M.2
Hays, M.D.3
-
32
-
-
84920940030
-
Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries
-
[32] Wang, K., Li, X., Chen, J., Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries. Adv. Mater. 27 (2015), 527–545.
-
(2015)
Adv. Mater.
, vol.27
, pp. 527-545
-
-
Wang, K.1
Li, X.2
Chen, J.3
-
33
-
-
84922751469
-
2/Graphene Hybrids for High-Performance Lithium Storage
-
2/Graphene Hybrids for High-Performance Lithium Storage. Carbon 81 (2015), 203–209.
-
(2015)
Carbon
, vol.81
, pp. 203-209
-
-
Han, S.1
Zhao, Y.2
Tang, Y.3
Tan, F.4
Huang, Y.5
Feng, X.6
Wu, D.7
-
34
-
-
84927643353
-
2/Graphene Hybrid Nanoflowers with Enhanced Electrochemical Performances as Anode for Lithium-Ion Batteries
-
2/Graphene Hybrid Nanoflowers with Enhanced Electrochemical Performances as Anode for Lithium-Ion Batteries. J. Phys. Chem. C 119 (2015), 7959–7968.
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 7959-7968
-
-
Li, H.1
Yu, K.2
Fu, H.3
Guo, B.4
Lei, X.5
Zhu, Z.6
-
35
-
-
85027932785
-
3 Core-Shell Nanowire Array Anode for High Energy and Power Density Lithium-Ion Batteries
-
3 Core-Shell Nanowire Array Anode for High Energy and Power Density Lithium-Ion Batteries. Adv. Funct. Mater. 25 (2015), 3524–3533.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 3524-3533
-
-
Wang, C.1
Wu, L.2
Wang, H.3
Zuo, W.4
Li, Y.5
Liu, J.6
-
37
-
-
84964794062
-
2: Rational Design, Properties and Electrochemical Applications
-
2: Rational Design, Properties and Electrochemical Applications. Energy Environ. Sci. 9 (2016), 1190–1209.
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 1190-1209
-
-
Zhang, G.1
Liu, H.2
Qua, J.3
Li, J.4
-
39
-
-
79959807824
-
2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries
-
2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries. ACS Nano 5 (2011), 4720–4728.
-
(2011)
ACS Nano
, vol.5
, pp. 4720-4728
-
-
Chang, K.1
Chen, W.2
-
41
-
-
84964584147
-
2 with an Intercalation Reaction as a Long-Life Anode Material for Lithium Ion Batteries
-
2 with an Intercalation Reaction as a Long-Life Anode Material for Lithium Ion Batteries. Inorg. Chem. Front. 3 (2016), 532–535.
-
(2016)
Inorg. Chem. Front.
, vol.3
, pp. 532-535
-
-
Hu, Z.1
Liu, Q.2
Sun, W.3
Li, W.4
Tao, Z.5
Chou, S.6
Chen, J.7
Dou, S.8
-
42
-
-
84922032210
-
2 Nanosheet Nanocomposite and its Synergistic Lithium Storage Performance
-
2 Nanosheet Nanocomposite and its Synergistic Lithium Storage Performance. J. Mater. Chem. A 3 (2015), 2762–2769.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 2762-2769
-
-
Li, X.1
Li, W.2
Li, M.3
Cui, P.4
Chen, D.5
Gengenbach, T.6
Chu, L.7
Liu, H.8
Song, G.9
-
43
-
-
84920819690
-
2 Nanoflowers Consisting of Nanosheets with a Controllable Interlayer Distance as High-Performance Lithium Ion Battery Anodes
-
2 Nanoflowers Consisting of Nanosheets with a Controllable Interlayer Distance as High-Performance Lithium Ion Battery Anodes. RSC Adv. 5 (2015), 7938–7943.
-
(2015)
RSC Adv.
, vol.5
, pp. 7938-7943
-
-
Lu, Y.1
Yao, X.2
Yin, J.3
Peng, G.4
Cui, P.5
Xu, X.6
-
44
-
-
84877687451
-
Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries
-
[44] Reddy, M.V., Subba Rao, G.V., Chowdari, B.V.R., Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. 113 (2013), 5364–5457.
-
(2013)
Chem. Rev.
, vol.113
, pp. 5364-5457
-
-
Reddy, M.V.1
Subba Rao, G.V.2
Chowdari, B.V.R.3
-
45
-
-
84960080557
-
2 Nanosheets Inlayed into Carbon Frameworks for Superior Lithium-Ion Batteries
-
2 Nanosheets Inlayed into Carbon Frameworks for Superior Lithium-Ion Batteries. ACS Sustainable Chem. Eng. 4 (2016), 1148–1153.
-
(2016)
ACS Sustainable Chem. Eng.
, vol.4
, pp. 1148-1153
-
-
Ren, D.1
Hu, Y.2
Jiang, H.3
Deng, Z.4
Petr, S.5
Jiang, H.6
Li, C.7
-
47
-
-
84904410920
-
A New Electrochemical Impedance Spectroscopy Model of a High-Power Lithium-Ion Battery
-
[47] Zhu, J., Sun, Z., Wei, X., Dai, H., A New Electrochemical Impedance Spectroscopy Model of a High-Power Lithium-Ion Battery. RSC Adv. 4 (2014), 29988–29998.
-
(2014)
RSC Adv.
, vol.4
, pp. 29988-29998
-
-
Zhu, J.1
Sun, Z.2
Wei, X.3
Dai, H.4
-
48
-
-
84941072170
-
Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation
-
[48] He, K., Lin, F., Zhu, Y., Yu, X., Li, J., Lin, R., Nordlund, D., Weng, T., Richards, R.M., Yang, X., Doeff, M.M., Stach, E.A., Mo, Y., Xin, H., Su, D., Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation. Nano Lett. 15 (2015), 5755–5763.
-
(2015)
Nano Lett.
, vol.15
, pp. 5755-5763
-
-
He, K.1
Lin, F.2
Zhu, Y.3
Yu, X.4
Li, J.5
Lin, R.6
Nordlund, D.7
Weng, T.8
Richards, R.M.9
Yang, X.10
Doeff, M.M.11
Stach, E.A.12
Mo, Y.13
Xin, H.14
Su, D.15
-
49
-
-
84960914577
-
Potential Application of Metal Dichalcogenides Double-Layered Heterostructures as Anode Materials for Li-Ion Batteries
-
[49] Wang, D., Liu, L., Zhao, S., Hu, Z., Liu, H., Potential Application of Metal Dichalcogenides Double-Layered Heterostructures as Anode Materials for Li-Ion Batteries. J. Phys. Chem. C 120 (2016), 4779–4788.
-
(2016)
J. Phys. Chem. C
, vol.120
, pp. 4779-4788
-
-
Wang, D.1
Liu, L.2
Zhao, S.3
Hu, Z.4
Liu, H.5
-
51
-
-
85027951911
-
A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries
-
[51] Liu, J., Zhang, Q., Zhang, T., Li, J.-T., Huang, L., Sun, S.-G., A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries. Adv. Funct. Mater. 25 (2015), 3599–3605.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 3599-3605
-
-
Liu, J.1
Zhang, Q.2
Zhang, T.3
Li, J.-T.4
Huang, L.5
Sun, S.-G.6
-
52
-
-
84926967844
-
2-B Nanodomains for Lithium-Ion Storage: Capacity Enhancement by Phase Boundaries
-
2-B Nanodomains for Lithium-Ion Storage: Capacity Enhancement by Phase Boundaries. Adv. Energy Mater., 5, 2015, 1401756.
-
(2015)
Adv. Energy Mater.
, vol.5
, pp. 1401756
-
-
Wu, Q.1
Xu, J.2
Yang, X.3
Lu, F.4
He, S.5
Yang, J.6
Fan, H.-J.7
Wu, M.8
-
53
-
-
84967212125
-
2 Nanosheets on a Ti Substrate Through a Self-Supported Bonding Interface for High-Performance Lithium-Ion Batteries: A General Approach
-
2 Nanosheets on a Ti Substrate Through a Self-Supported Bonding Interface for High-Performance Lithium-Ion Batteries: A General Approach. J. Mater. Chem. A 4 (2016), 5932–5941.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 5932-5941
-
-
Zhou, Y.1
Liu, Y.2
Zhao, W.3
Xie, F.4
Xu, R.5
Li, B.6
Zhou, X.7
Shen, H.8
-
55
-
-
84930655267
-
Integrated Fast Assembly of Free-Standing Lithium Titanate/Carbon Nanotube/Cellulose Nanofiber Hybrid Network Film as Flexible Paper-Electrode for Lithium-Ion Batteries
-
[55] Cao, S., Feng, X., Song, Y., Xue, X., Liu, H., Miao, M., Fang, J., Shi, L., Integrated Fast Assembly of Free-Standing Lithium Titanate/Carbon Nanotube/Cellulose Nanofiber Hybrid Network Film as Flexible Paper-Electrode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 7 (2015), 10695–10701.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 10695-10701
-
-
Cao, S.1
Feng, X.2
Song, Y.3
Xue, X.4
Liu, H.5
Miao, M.6
Fang, J.7
Shi, L.8
|