메뉴 건너뛰기




Volumn 13, Issue 3, 2016, Pages 309-332

On generating high InfoQ with Bayesian networks

Author keywords

applications of Bayesian networks; Bayesian networks; InfoQ; Information quality

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA HANDLING; DATA INTEGRATION; DATA MINING; INFORMATION ANALYSIS; POPULATION STATISTICS; QUALITY CONTROL; RISK MANAGEMENT; SURVEYS;

EID: 84978493545     PISSN: 16843703     EISSN: None     Source Type: Journal    
DOI: 10.1080/16843703.2016.1189182     Document Type: Article
Times cited : (15)

References (45)
  • 3
    • 84885175788 scopus 로고    scopus 로고
    • Causal inference, probability theory, and graphical insights
    • S.Baker, (2013). Causal inference, probability theory, and graphical insights. Statistics in Medicine, 2, 4319–4330.
    • (2013) Statistics in Medicine , vol.2 , pp. 4319-4330
    • Baker, S.1
  • 4
    • 84981178119 scopus 로고    scopus 로고
    • Ruggeri F., Kenett R.S., Faltin F., (eds), UK: Wiley
    • I.Ben Gal, (2007). Bayesian Networks, in Encyclopaedia of Statistics in Quality and Reliability. In F.Ruggeri, R.S.Kenett, & F.Faltin (Eds.), Bayesian Networks (pp. 179–185). UK:Wiley.
    • (2007) Bayesian Networks , pp. 179-185
    • Ben Gal, I.1
  • 5
    • 84886795941 scopus 로고    scopus 로고
    • Salt: How much less should we eat for health?
    • N.Cook, (2013). Salt:How much less should we eat for health? Significance, 10, 6–10. doi:10.1111/j.1740-9713.2013.00689.x
    • (2013) Significance , vol.10 , pp. 6-10
    • Cook, N.1
  • 6
    • 84981184616 scopus 로고    scopus 로고
    • C.Cornalba, R.S.Kenett, & P.Giudici, (2007). Sensitivity Analysis of Bayesian Networks with Stochastic Emulators, in ENBIS-DEINDE proceedings, University of Torino, Torino, Italy.
    • (2007)
    • Cornalba, C.1    Kenett, R.S.2    Giudici, P.3
  • 7
    • 84978892734 scopus 로고    scopus 로고
    • Bayesian network applications to customer surveys and InfoQ
    • F.Cugnata, R.S.Kenett, & S.Salini, (2014). Bayesian network applications to customer surveys and InfoQ. Procedia Economics and Finance, 17, 3–9. doi:10.1016/S2212-5671(14)00871-5
    • (2014) Procedia Economics and Finance , vol.17 , pp. 3-9
    • Cugnata, F.1    Kenett, R.S.2    Salini, S.3
  • 8
    • 84978924078 scopus 로고    scopus 로고
    • Bayesian networks in survey data: Robustness and sensitivity issues
    • F.Cugnata, R.S.Kenett, & S.Salni, (2016). Bayesian networks in survey data:Robustness and sensitivity issues. Journal of Quality Technology, 48, in press.
    • (2016) Journal of Quality Technology , vol.48
    • Cugnata, F.1    Kenett, R.S.2    Salni, S.3
  • 9
    • 84896499401 scopus 로고    scopus 로고
    • Official statistics data integration using vines and non parametric Bayesian belief nets
    • L.DallaValle, (2014). Official statistics data integration using vines and non parametric Bayesian belief nets. Quality Technology and Quantitative Management, 11, 111–131.
    • (2014) Quality Technology and Quantitative Management , vol.11 , pp. 111-131
    • DallaValle, L.1
  • 10
    • 24644488685 scopus 로고    scopus 로고
    • Multivariate techniques for imputation based on Bayesian networks
    • M.Di Zio, G.Sacco, M.Scanu, & P.Vicard, (2005). Multivariate techniques for imputation based on Bayesian networks. Neural Network World, 4, 303–309.
    • (2005) Neural Network World , vol.4 , pp. 303-309
    • Di Zio, M.1    Sacco, G.2    Scanu, M.3    Vicard, P.4
  • 11
    • 33846705838 scopus 로고    scopus 로고
    • Causality and causal models: A conceptual perspective
    • B.Frosini, (2006). Causality and causal models:A conceptual perspective. International Statistical Review, 74, 305–334. doi:10.1111/j.1751-823.2006.tb00298.x
    • (2006) International Statistical Review , vol.74 , pp. 305-334
    • Frosini, B.1
  • 12
    • 84865517397 scopus 로고    scopus 로고
    • Efficient Bayesian network learning for system optimization in reliability engineering
    • A.Gruber, & I.Ben Gal, (2012). Efficient Bayesian network learning for system optimization in reliability engineering. Quality Technology and Quantitative Management, 9, 97–114.
    • (2012) Quality Technology and Quantitative Management , vol.9 , pp. 97-114
    • Gruber, A.1    Ben Gal, I.2
  • 13
    • 84981290210 scopus 로고    scopus 로고
    • Modeling web usability diagnostics on the basis of usage statistics
    • Jank W., Shmueli G., (eds), NJ: John Wiley and Sons
    • A.Harel, R.S.Kenett, & F.Ruggeri, (2009). Modeling web usability diagnostics on the basis of usage statistics. In W.Jank and G.Shmueli (Eds.), Statistical methods in eCommerce research, NJ:John Wiley and Sons.
    • (2009) Statistical methods in eCommerce research
    • Harel, A.1    Kenett, R.S.2    Ruggeri, F.3
  • 14
    • 84981290201 scopus 로고
    • D.Heckerman, (1995). A tutorial on learning with Bayesian networks. Microsoft Research Tech. Report MSR-TR-95-06. (Revised November 1996), Retrieved from http://research.microsoft.com.
    • (1995)
    • Heckerman, D.1
  • 15
    • 41849108447 scopus 로고    scopus 로고
    • Econometric causality
    • J.Heckman, (2008). Econometric causality. International Statistical Review, 76, 1–27. doi:10.1111/j.1751-5823.2007.00024.x
    • (2008) International Statistical Review , vol.76 , pp. 1-27
    • Heckman, J.1
  • 18
    • 33746381468 scopus 로고    scopus 로고
    • Aspects of statistical consulting not taught by academia
    • R.Kenett, & P.Thyregod, (2006). Aspects of statistical consulting not taught by academia. Statistica Needlandica, 60, 396–411.
    • (2006) Statistica Needlandica , vol.60 , pp. 396-411
    • Kenett, R.1    Thyregod, P.2
  • 21
    • 69549084920 scopus 로고    scopus 로고
    • New Frontiers: Bayesian networks give insight into survey-data analysis
    • R.S.Kenett, & S.Salini, (2009). New Frontiers:Bayesian networks give insight into survey-data analysis. Quality Progress, 42, 31–36.
    • (2009) Quality Progress , vol.42 , pp. 31-36
    • Kenett, R.S.1    Salini, S.2
  • 23
    • 80054803192 scopus 로고    scopus 로고
    • Modern analysis of customer surveys: Comparison of models and integrated analysis’, with discussion
    • R.S.Kenett, & S.Salini, (2012). Modern analysis of customer surveys:Comparison of models and integrated analysis’, with discussion. Applied Stochastic Models in Business and Industry, 27, 465–475.
    • (2012) Applied Stochastic Models in Business and Industry , vol.27 , pp. 465-475
    • Kenett, R.S.1    Salini, S.2
  • 27
    • 70350256362 scopus 로고    scopus 로고
    • Cause and effect diagrams
    • Ruggeri F., Kenett R.S., Faltin F., (eds), UK: Wiley, Online version, Wiley InterScience
    • R.S.Kenett, (2007). Cause and effect diagrams,. In F.Ruggeri, R.S.Kenett, & F.Faltin (Eds.), Encyclopedia of statistics in quality and reliability (pp. 284–288). UK:Wiley, Online version, Wiley InterScience.
    • (2007) Encyclopedia of statistics in quality and reliability , pp. 284-288
    • Kenett, R.S.1
  • 28
    • 84886687849 scopus 로고    scopus 로고
    • Risk Analysis in Drug Manufacturing and Healthcare
    • Faltin F., Kenett R.S., Ruggeri F., (eds), Chichester: John Wiley and Sons
    • R.S.Kenett, (2012). Risk Analysis in Drug Manufacturing and Healthcare. In F.Faltin, R.S.Kenett, & F.Ruggeri (Eds.), Statistical methods in healthcare (pp. 122–154). Chichester:John Wiley and Sons.
    • (2012) Statistical methods in healthcare , pp. 122-154
    • Kenett, R.S.1
  • 29
    • 84981182630 scopus 로고    scopus 로고
    • R.S.Kenett, A.Gruber, & I.Ben Gal, (2012). Applications of Bayesian networks to small, mid-size and massive data, The 6th Inter. Workshop on Applied Probability – IWAP 2012, Jerusalem.
    • (2012)
    • Kenett, R.S.1    Gruber, A.2    Ben Gal, I.3
  • 32
    • 84884498487 scopus 로고    scopus 로고
    • Object-oriented Bayesian networks for modelling the respondent measurement error
    • D.Marella, & P.Vicard, (2013). Object-oriented Bayesian networks for modelling the respondent measurement error. Communications in Statistics - Theory and Methods, 42, 3463–3477.
    • (2013) Communications in Statistics - Theory and Methods , vol.42 , pp. 3463-3477
    • Marella, D.1    Vicard, P.2
  • 34
    • 84888269960 scopus 로고    scopus 로고
    • A PC algorithm variation for ordinal variables
    • F.Musella, (2013). A PC algorithm variation for ordinal variables. Computational Statistics, 28, 2749–2759.
    • (2013) Computational Statistics , vol.28 , pp. 2749-2759
    • Musella, F.1
  • 36
    • 84981263920 scopus 로고
    • J.Pearl, (1985). Bayesian Networks:A Model of self-activated memory for evidential reasoning’ (UCLA Technical Report CSD-850017). Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, CA, 329–334.
    • (1985) , pp. 329-334
    • Pearl, J.1
  • 39
    • 84885113580 scopus 로고    scopus 로고
    • Comment on causal inference, probability theory, and graphical insights (by Stuart G. Baker). UCLA cognitive systems laboratory
    • J.Pearl, (2013). Comment on causal inference, probability theory, and graphical insights (by Stuart G. Baker). UCLA cognitive systems laboratory. Statistics in Medicine, 32, 4331–4333.
    • (2013) Statistics in Medicine , vol.32 , pp. 4331-4333
    • Pearl, J.1
  • 40
    • 84871900769 scopus 로고    scopus 로고
    • Modelling opportunities for statisticians supporting quality by design efforts for pharmaceutical development and manufacturing
    • J.Peterson, & R.S.Kenett, (2011). Modelling opportunities for statisticians supporting quality by design efforts for pharmaceutical development and manufacturing. Biopharmaceutical Report, 18(2), 6–16.
    • (2011) Biopharmaceutical Report , vol.18 , Issue.2 , pp. 6-16
    • Peterson, J.1    Kenett, R.S.2
  • 41
    • 84918789457 scopus 로고    scopus 로고
    • Reconciling internal and external performance in a holistic approach: A Bayesian network model in higher education
    • L.D.Pietro, R.G.Mugion, F.Musella, M.F.Renzi, & P.Vicard, (2015). Reconciling internal and external performance in a holistic approach:A Bayesian network model in higher education. Expert Systems with Applications, 42, 2691–2702. doi:10.1016/j.eswa.2014.11.019
    • (2015) Expert Systems with Applications , vol.42 , pp. 2691-2702
    • Pietro, L.D.1    Mugion, R.G.2    Musella, F.3    Renzi, M.F.4    Vicard, P.5
  • 43
    • 78751611452 scopus 로고    scopus 로고
    • To Explain or to Predict?
    • G.Shmueli, (2010). To Explain or to Predict? Statistical Science, 25, 289–310. doi:10.1214/10-STS330
    • (2010) Statistical Science , vol.25 , pp. 289-310
    • Shmueli, G.1
  • 44
    • 84859427933 scopus 로고    scopus 로고
    • Monitoring and improving Greek banking services using Bayesian networks: An analysis of mystery shopping data
    • C.Tarantola, P.Vicard, & I.Ntzoufras, (2012). Monitoring and improving Greek banking services using Bayesian networks:An analysis of mystery shopping data. Expert Systems with Applications, 39, 10103–10111. doi:10.1016/j.eswa.2012.02.060
    • (2012) Expert Systems with Applications , vol.39 , pp. 10103-10111
    • Tarantola, C.1    Vicard, P.2    Ntzoufras, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.