메뉴 건너뛰기




Volumn 8, Issue 11, 2016, Pages

Metabolic signaling to chromatin

Author keywords

[No Author keywords available]

Indexed keywords

CHROMATIN; NICOTINAMIDE ADENINE DINUCLEOTIDE;

EID: 84978462097     PISSN: None     EISSN: 19430264     Source Type: Journal    
DOI: 10.1101/cshperspect.a019463     Document Type: Article
Times cited : (112)

References (159)
  • 1
    • 78751676934 scopus 로고    scopus 로고
    • KAT(ching) metabolism by the tail: Insight into the links between lysine acetyltransferases and metabolism
    • Albaugh BN, Arnold KM, Denu JM. (2011). KAT(ching) metabolism by the tail: Insight into the links between lysine acetyltransferases and metabolism. Chembiochem 12: 290-298.
    • (2011) Chembiochem , vol.12 , pp. 290-298
    • Albaugh, B.N.1    Arnold, K.M.2    Denu, J.M.3
  • 13
    • 84871538934 scopus 로고    scopus 로고
    • Regulation of chromatin structure by poly(ADP-ribosyl)-ation
    • Beneke S. (2012). Regulation of chromatin structure by poly(ADP-ribosyl)-ation. Front Genet 3: 169.
    • (2012) Front Genet , vol.3 , pp. 169
    • Beneke, S.1
  • 14
    • 57049152851 scopus 로고    scopus 로고
    • Catalysis and substrate selection by histone/protein lysine acetyltransferases
    • Berndsen CE, Denu JM. (2008). Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol 18: 682-689.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 682-689
    • Berndsen, C.E.1    Denu, J.M.2
  • 16
    • 79955960768 scopus 로고    scopus 로고
    • Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
    • Cai L, Sutter BM, Li B, Tu BP. (2011). Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes.Mol Cell 42: 426-437.
    • (2011) Mol Cell , vol.42 , pp. 426-437
    • Cai, L.1    Sutter, B.M.2    Li, B.3    Tu, B.P.4
  • 18
    • 84859977895 scopus 로고    scopus 로고
    • Sirtuins mediate mammalian metabolic responses to nutrient availability
    • Chalkiadaki A, Guarente L. (2012). Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol 8: 287-296.
    • (2012) Nat Rev Endocrinol , vol.8 , pp. 287-296
    • Chalkiadaki, A.1    Guarente, L.2
  • 20
    • 84879391795 scopus 로고    scopus 로고
    • SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
    • Chang HC, Guarente L. (2013). SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153: 1448-1460.
    • (2013) Cell , vol.153 , pp. 1448-1460
    • Chang, H.C.1    Guarente, L.2
  • 21
    • 0019868276 scopus 로고
    • Hemin enhances the differentiation of mouse 3T3 cells to adipocytes
    • Chen JJ, London IM. (1981). Hemin enhances the differentiation of mouse 3T3 cells to adipocytes. Cell 26: 117-122.
    • (1981) Cell , vol.26 , pp. 117-122
    • Chen, J.J.1    London, I.M.2
  • 22
    • 0030740253 scopus 로고    scopus 로고
    • Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300
    • Chen H, Lin RJ, Schiltz RL, ChakravartiD,Nash A,Nagy L, Privalsky ML, Nakatani Y, Evans RM. (1997). Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569-580.
    • (1997) Cell , vol.90 , pp. 569-580
    • Chen, H.1    Lin, R.J.2    Schiltz, R.L.3    Chakravarti, D.4    Nash, A.5    Nagy, L.6    Privalsky, M.L.7    Nakatani, Y.8    Evans, R.M.9
  • 23
    • 84887180079 scopus 로고    scopus 로고
    • Structural and functional coordination of DNA and histone methylation
    • Cheng X. (2014). Structural and functional coordination of DNA and histone methylation. Cold Spring Harb Perspect Biol 6: a018747.
    • (2014) Cold Spring Harb Perspect Biol , vol.6
    • Cheng, X.1
  • 26
    • 0033695926 scopus 로고    scopus 로고
    • Light induces chromatin modification in cells of the mammalian circadian clock
    • Crosio C, Cermakian N, Allis CD, Sassone-Corsi P. (2000). Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3: 1241-1247.
    • (2000) Nat Neurosci , vol.3 , pp. 1241-1247
    • Crosio, C.1    Cermakian, N.2    Allis, C.D.3    Sassone-Corsi, P.4
  • 29
    • 79959337934 scopus 로고    scopus 로고
    • Quantitative analyses of cryptochrome-mBMAL1 interactions: Mechanistic insights into the transcriptional regulation of the mammalian circadian clock
    • Czarna A, Breitkreuz H, Mahrenholz CC, Arens J, Strauss HM, Wolf E. (2011). Quantitative analyses of cryptochrome-mBMAL1 interactions: Mechanistic insights into the transcriptional regulation of the mammalian circadian clock. J Biol Chem 286: 22414-22425.
    • (2011) J Biol Chem , vol.286 , pp. 22414-22425
    • Czarna, A.1    Breitkreuz, H.2    Mahrenholz, C.C.3    Arens, J.4    Strauss, H.M.5    Wolf, E.6
  • 34
    • 80053355301 scopus 로고    scopus 로고
    • Histone lysine demethylase JARID1a activates CLOCKBMAL1 and influences the circadian clock
    • DiTacchio L, LeHD, Vollmers C, Hatori M,Witcher M, Secombe J, Panda S. (2011). Histone lysine demethylase JARID1a activates CLOCKBMAL1 and influences the circadian clock. Science 333: 1881-1885.
    • (2011) Science , vol.333 , pp. 1881-1885
    • DiTacchio, L.1    Le, H.D.2    Vollmers, C.3    Hatori, M.4    Witcher, M.5    Secombe, J.6    Panda, S.7
  • 35
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi M, Hirayama J, Sassone-Corsi P. (2006). Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497-508.
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 36
    • 34548715144 scopus 로고    scopus 로고
    • Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development
    • Dolinoy DC, Huang D, Jirtle RL. (2007). Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci 104: 13056-13061.
    • (2007) Proc Natl Acad Sci , vol.104 , pp. 13056-13061
    • Dolinoy, D.C.1    Huang, D.2    Jirtle, R.L.3
  • 37
    • 77953292242 scopus 로고    scopus 로고
    • Nutrientdependent regulation of PGC-1α‘s acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5
    • Dominy JE Jr, Lee Y, Gerhart-Hines Z, Puigserver P. (2010). Nutrientdependent regulation of PGC-1α‘s acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim Biophys Acta 1804: 1676-1683.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 1676-1683
    • Dominy, J.E.1    Lee, Y.2    Gerhart-Hines, Z.3    Puigserver, P.4
  • 38
    • 84893787747 scopus 로고    scopus 로고
    • Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes
    • Duong HA, Weitz CJ. (2014). Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat Struct Mol Biol 21: 126-132.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 126-132
    • Duong, H.A.1    Weitz, C.J.2
  • 40
    • 0037426839 scopus 로고    scopus 로고
    • Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    • Etchegaray JP, Lee C, Wade PA, Reppert SM. (2003). Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421: 177-182.
    • (2003) Nature , vol.421 , pp. 177-182
    • Etchegaray, J.P.1    Lee, C.2    Wade, P.A.3    Reppert, S.M.4
  • 42
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman JL, Baeza J, Denu JM. (2013).Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288: 31350-31356.
    • (2013) J Biol Chem , vol.288 , pp. 31350-31356
    • Feldman, J.L.1    Baeza, J.2    Denu, J.M.3
  • 43
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA. (2011). A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331: 1315-1319.
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1    Liu, T.2    Sun, Z.3    Bugge, A.4    Mullican, S.E.5    Alenghat, T.6    Liu, X.S.7    Lazar, M.A.8
  • 46
    • 67949102053 scopus 로고    scopus 로고
    • Recent progress in the biology and physiology of sirtuins
    • Finkel T, Deng CX,Mostoslavsky R. (2009). Recent progress in the biology and physiology of sirtuins. Nature 460: 587.
    • (2009) Nature , vol.460 , pp. 587
    • Finkel, T.1    Deng, C.X.2    Mostoslavsky, R.3
  • 47
    • 44549086610 scopus 로고    scopus 로고
    • Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase
    • Fischer M, Bacher A. (2008). Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase. Arch Biochem Biophys 474: 252.
    • (2008) Arch Biochem Biophys , vol.474 , pp. 252
    • Fischer, M.1    Bacher, A.2
  • 48
    • 67651183861 scopus 로고    scopus 로고
    • A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA
    • Friis RM, Wu BP, Reinke SN, Hockman DJ, Sykes BD, Schultz MC. (2009). A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 37: 3969-3980.
    • (2009) Nucleic Acids Res , vol.37 , pp. 3969-3980
    • Friis, R.M.1    Wu, B.P.2    Reinke, S.N.3    Hockman, D.J.4    Sykes, B.D.5    Schultz, M.C.6
  • 51
    • 84862758175 scopus 로고    scopus 로고
    • New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs
    • Gibson BA, Kraus WL. (2012).New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13: 411-424.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 411-424
    • Gibson, B.A.1    Kraus, W.L.2
  • 52
    • 84885913409 scopus 로고    scopus 로고
    • SIRT6 exhibits nucleosomedependent deacetylase activity
    • Gil R, Barth S, Kanfi Y, Cohen HY. (2013). SIRT6 exhibits nucleosomedependent deacetylase activity. Nucleic Acids Res 41: 8537-8545.
    • (2013) Nucleic Acids Res , vol.41 , pp. 8537-8545
    • Gil, R.1    Barth, S.2    Kanfi, Y.3    Cohen, H.Y.4
  • 55
    • 39049152367 scopus 로고    scopus 로고
    • S-adenosylmethionine and its products
    • Grillo MA, Colombatto S. (2008). S-adenosylmethionine and its products. Amino Acids 34: 187-193.
    • (2008) Amino Acids , vol.34 , pp. 187-193
    • Grillo, M.A.1    Colombatto, S.2
  • 58
    • 79551584971 scopus 로고    scopus 로고
    • Regulation of intermediary metabolism by protein acetylation
    • Guan KL, Xiong Y. (2011). Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 36: 108-116.
    • (2011) Trends Biochem Sci , vol.36 , pp. 108-116
    • Guan, K.L.1    Xiong, Y.2
  • 60
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows WC, Lee S, Denu JM. (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci 103: 10230-10235.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 64
    • 78649664485 scopus 로고    scopus 로고
    • Structural insights into histone lysine demethylation
    • Hou H, Yu H. (2010). Structural insights into histone lysine demethylation. Curr Opin Struct Biol 20: 739-748.
    • (2010) Curr Opin Struct Biol , vol.20 , pp. 739-748
    • Hou, H.1    Yu, H.2
  • 66
    • 84893931097 scopus 로고    scopus 로고
    • Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging
    • Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, LiW, Tyler JK. (2014). Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28: 396-408.
    • (2014) Genes Dev , vol.28 , pp. 396-408
    • Hu, Z.1    Chen, K.2    Xia, Z.3    Chavez, M.4    Pal, S.5    Seol, J.H.6    Chen, C.C.7    Li, W.8    Tyler, J.K.9
  • 67
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M, Guarente L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 68
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein M, McVey M, Guarente L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570-2580.
    • (1999) Genes Dev , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 70
    • 84867906972 scopus 로고    scopus 로고
    • Gatekeepers of chromatin: Small metabolites elicit big changes in gene expression
    • Kaochar S, Tu BP. (2012). Gatekeepers of chromatin: Small metabolites elicit big changes in gene expression. Trends Biochem Sci 37: 477-483.
    • (2012) Trends Biochem Sci , vol.37 , pp. 477-483
    • Kaochar, S.1    Tu, B.P.2
  • 71
    • 78649886477 scopus 로고    scopus 로고
    • The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
    • Katada S, Sassone-Corsi P. (2010). The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17: 1414-1421.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1414-1421
    • Katada, S.1    Sassone-Corsi, P.2
  • 72
    • 84856090681 scopus 로고    scopus 로고
    • Connecting threads: Epigenetics and metabolism
    • Katada S, Imhof A, Sassone-Corsi P. (2012). Connecting threads: Epigenetics and metabolism. Cell 148: 24-28.
    • (2012) Cell , vol.148 , pp. 24-28
    • Katada, S.1    Imhof, A.2    Sassone-Corsi, P.3
  • 75
    • 79959846078 scopus 로고    scopus 로고
    • Dynamic chromatin localization of Sirt6 shapes stress- and agingrelated transcriptional networks
    • Kawahara TL, Rapicavoli NA,Wu AR, Qu K, Quake SR, Chang HY. (2011). Dynamic chromatin localization of Sirt6 shapes stress- and agingrelated transcriptional networks. PLoS Genet 7: e1002153.
    • (2011) PLoS Genet , vol.7
    • Kawahara, T.L.1    Rapicavoli, N.A.2    Wu, A.R.3    Qu, K.4    Quake, S.R.5    Chang, H.Y.6
  • 76
    • 84877695106 scopus 로고    scopus 로고
    • Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus
    • Kera Y, Katoh Y, Ohta M, Matsumoto M, Takano-Yamamoto T, Igarashi K. (2013). Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus. J Biol Chem 288: 13592-13601.
    • (2013) J Biol Chem , vol.288 , pp. 13592-13601
    • Kera, Y.1    Katoh, Y.2    Ohta, M.3    Matsumoto, M.4    Takano-Yamamoto, T.5    Igarashi, K.6
  • 78
    • 77954818442 scopus 로고    scopus 로고
    • Genome-nuclear lamina interactions and gene regulation
    • Kind J, van Steensel B. (2010). Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 22: 320-325.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 320-325
    • Kind, J.1    van Steensel, B.2
  • 79
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. (2012). Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338: 349-354.
    • (2012) Science , vol.338 , pp. 349-354
    • Koike, N.1    Yoo, S.H.2    Huang, H.C.3    Kumar, V.4    Lee, C.5    Kim, T.K.6    Takahashi, J.S.7
  • 80
    • 33744475759 scopus 로고    scopus 로고
    • Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response toDNA damage
    • Kolthur-Seetharam U, Dantzer F,McBurneyMW, deMurcia G, Sassone-Corsi P. (2006). Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response toDNA damage. Cell Cycle 5: 873-877.
    • (2006) Cell Cycle , vol.5 , pp. 873-877
    • Kolthur-Seetharam, U.1    Dantzer, F.2    McBurney, M.W.3    deMurcia, G.4    Sassone-Corsi, P.5
  • 81
    • 77956526559 scopus 로고    scopus 로고
    • PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway
    • Krishnakumar R, Kraus WL. (2010). PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway.Mol Cell 39: 736-749.
    • (2010) Mol Cell , vol.39 , pp. 736-749
    • Krishnakumar, R.1    Kraus, W.L.2
  • 87
    • 34248526020 scopus 로고    scopus 로고
    • Comparative kinetics of cofactor association and dissociation for the human and trypanosomal S-adenosylhomocysteine hydrolases. 1. Basic features of the association and dissociation processes
    • Li QS, Cai S, Borchardt RT, Fang J, Kuczera K, Middaugh CR, Schowen RL. (2007). Comparative kinetics of cofactor association and dissociation for the human and trypanosomal S-adenosylhomocysteine hydrolases. 1. Basic features of the association and dissociation processes. Biochemistry 46: 5798-5809.
    • (2007) Biochemistry , vol.46 , pp. 5798-5809
    • Li, Q.S.1    Cai, S.2    Borchardt, R.T.3    Fang, J.4    Kuczera, K.5    Middaugh, C.R.6    Schowen, R.L.7
  • 88
    • 84872018370 scopus 로고    scopus 로고
    • Embryonic stem cell and induced pluripotent stem cell: An epigenetic perspective
    • Liang G, Zhang Y. (2013). Embryonic stem cell and induced pluripotent stem cell: An epigenetic perspective. Cell Res 23: 49-69.
    • (2013) Cell Res , vol.23 , pp. 49-69
    • Liang, G.1    Zhang, Y.2
  • 89
    • 0034703217 scopus 로고    scopus 로고
    • Requirement ofNAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin SJ, Defossez PA, Guarente L. (2000). Requirement ofNAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289: 2126-2128.
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1    Defossez, P.A.2    Guarente, L.3
  • 91
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • Lu C, Thompson CB. (2012). Metabolic regulation of epigenetics. Cell Metab 16: 9-17.
    • (2012) Cell Metab , vol.16 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 93
    • 79960570256 scopus 로고    scopus 로고
    • Flavogenomics-A genomic and structural view of flavin-dependent proteins
    • Macheroux P, Kappes B, Ealick SE. (2011). Flavogenomics-A genomic and structural view of flavin-dependent proteins. FEBS J 278: 2625-2634.
    • (2011) FEBS J , vol.278 , pp. 2625-2634
    • Macheroux, P.1    Kappes, B.2    Ealick, S.E.3
  • 95
    • 77958574512 scopus 로고    scopus 로고
    • Plasticity and specificity of the circadian epigenome
    • Masri S, Sassone-Corsi P. (2010). Plasticity and specificity of the circadian epigenome. Nat Neurosci 13: 1324-1329.
    • (2010) Nat Neurosci , vol.13 , pp. 1324-1329
    • Masri, S.1    Sassone-Corsi, P.2
  • 103
    • 67349271210 scopus 로고    scopus 로고
    • Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: Potential physiological implications
    • Nader N, Chrousos GP, Kino T. (2009). Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: Potential physiological implications. FASEB J 23: 1572-1583.
    • (2009) FASEB J , vol.23 , pp. 1572-1583
    • Nader, N.1    Chrousos, G.P.2    Kino, T.3
  • 108
  • 109
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{a}
    • Nemoto S, Fergusson MM, Finkel T. (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{a}. J Biol Chem 280: 16456-16460.
    • (2005) J Biol Chem , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 110
    • 79957549799 scopus 로고    scopus 로고
    • Pathways and subcellular compartmentation ofNAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation
    • Nikiforov A, Dölle C, Niere M, Ziegler M. (2011). Pathways and subcellular compartmentation ofNAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation. J Biol Chem 286: 21767-21778.
    • (2011) J Biol Chem , vol.286 , pp. 21767-21778
    • Nikiforov, A.1    Dölle, C.2    Niere, M.3    Ziegler, M.4
  • 113
    • 0033511832 scopus 로고    scopus 로고
    • Cell biology of heme
    • Ponka P. (1999). Cell biology of heme. Am J Med Sci 318: 241-256.
    • (1999) Am J Med Sci , vol.318 , pp. 241-256
    • Ponka, P.1
  • 115
    • 84455200582 scopus 로고    scopus 로고
    • Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells
    • Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, Kellis M, Gymrek M, Issner R, Coyne M, et al. (2011). Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147: 1628-1639.
    • (2011) Cell , vol.147 , pp. 1628-1639
    • Ram, O.1    Goren, A.2    Amit, I.3    Shoresh, N.4    Yosef, N.5    Ernst, J.6    Kellis, M.7    Gymrek, M.8    Issner, R.9    Coyne, M.10
  • 119
    • 0037194790 scopus 로고    scopus 로고
    • Coordination of circadian timing in mammals
    • Reppert SM, Weaver DR. (2002). Coordination of circadian timing in mammals. Nature 418: 935-941.
    • (2002) Nature , vol.418 , pp. 935-941
    • Reppert, S.M.1    Weaver, D.R.2
  • 120
    • 33644617485 scopus 로고    scopus 로고
    • Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
    • Ripperger JA, Schibler U. (2006). Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38: 369-374.
    • (2006) Nat Genet , vol.38 , pp. 369-374
    • Ripperger, J.A.1    Schibler, U.2
  • 122
    • 84859367098 scopus 로고    scopus 로고
    • Circadian rhythms and memory formation: Regulation by chromatin remodeling
    • Sahar S, Sassone-Corsi P. (2012). Circadian rhythms and memory formation: Regulation by chromatin remodeling. Front Mol Neurosci 5: 37.
    • (2012) Front Mol Neurosci , vol.5 , pp. 37
    • Sahar, S.1    Sassone-Corsi, P.2
  • 123
    • 84455180597 scopus 로고    scopus 로고
    • Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation
    • Sahar S, Nin V, Barbosa MT, Chini EN, Sassone-Corsi P. (2011). Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging 3: 794-802.
    • (2011) Aging , vol.3 , pp. 794-802
    • Sahar, S.1    Nin, V.2    Barbosa, M.T.3    Chini, E.N.4    Sassone-Corsi, P.5
  • 126
    • 17644373758 scopus 로고    scopus 로고
    • Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome
    • Scaffidi P, Misteli T. (2005). Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11: 440-445.
    • (2005) Nat Med , vol.11 , pp. 440-445
    • Scaffidi, P.1    Misteli, T.2
  • 127
    • 33646745137 scopus 로고    scopus 로고
    • Lamin A-dependent nuclear defects in human aging
    • Scaffidi P, Misteli T. (2006). Lamin A-dependent nuclear defects in human aging. Science 312: 1059-1063.
    • (2006) Science , vol.312 , pp. 1059-1063
    • Scaffidi, P.1    Misteli, T.2
  • 128
    • 0037184977 scopus 로고    scopus 로고
    • A web of circadian pacemakers
    • Schibler U, Sassone-Corsi P. (2002). A web of circadian pacemakers. Cell 111: 919-922.
    • (2002) Cell , vol.111 , pp. 919-922
    • Schibler, U.1    Sassone-Corsi, P.2
  • 130
    • 38649123072 scopus 로고    scopus 로고
    • Conserved metabolic regulatory functions of sirtuins
    • Schwer B, Verdin E. (2008). Conserved metabolic regulatory functions of sirtuins. Cell Metab 7: 104.
    • (2008) Cell Metab , vol.7 , pp. 104
    • Schwer, B.1    Verdin, E.2
  • 132
    • 84921425001 scopus 로고    scopus 로고
    • Erasers of histone acetylation: The histone deacetylase enzymes
    • * Seto E, Yoshida M. (2014). Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6: a018713.
    • (2014) Cold Spring Harb Perspect Biol , vol.6
    • Seto, E.1    Yoshida, M.2
  • 138
  • 141
    • 33745557847 scopus 로고    scopus 로고
    • Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription
    • Takahashi H, McCaffery JM, Irizarry RA, Boeke JD. (2006). Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23: 207-217.
    • (2006) Mol Cell , vol.23 , pp. 207-217
    • Takahashi, H.1    McCaffery, J.M.2    Irizarry, R.A.3    Boeke, J.D.4
  • 143
    • 77957666255 scopus 로고    scopus 로고
    • Histone methyl transferases and demethylases; can they link metabolism and transcription?
    • Teperino R, Schoonjans K, Auwerx J. (2010). Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 12: 321-327.
    • (2010) Cell Metab , vol.12 , pp. 321-327
    • Teperino, R.1    Schoonjans, K.2    Auwerx, J.3
  • 145
    • 84856755475 scopus 로고    scopus 로고
    • Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription
    • Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. (2012). Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics 11: 60-76.
    • (2012) Mol Cell Proteomics , vol.11 , pp. 60-76
    • Tsai, Y.C.1    Greco, T.M.2    Boonmee, A.3    Miteva, Y.4    Cristea, I.M.5
  • 146
    • 27944487902 scopus 로고    scopus 로고
    • Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes
    • Tu BP, Kudlicki A, Rowicka M, McKnight SL. (2005). Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes. Science 310: 1152-1158.
    • (2005) Science , vol.310 , pp. 1152-1158
    • Tu, B.P.1    Kudlicki, A.2    Rowicka, M.3    McKnight, S.L.4
  • 151
    • 78449248442 scopus 로고    scopus 로고
    • SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice
    • Xiao C, Kim HS, Lahusen T,Wang RH, Xu X, GavrilovaO, JouW, GiusD, Deng CX. (2010). SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem 285: 36776-36784.
    • (2010) J Biol Chem , vol.285 , pp. 36776-36784
    • Xiao, C.1    Kim, H.S.2    Lahusen, T.3    Wang, R.H.4    Xu, X.5    Gavrilova, O.6    Jou, W.7    Gius, D.8    Deng, C.X.9
  • 152
    • 55449106027 scopus 로고    scopus 로고
    • Analysis of gene regulatory networks in the mammalian circadian rhythm
    • Yan J,Wang H, Liu Y, Shao C. (2008). Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 4: e1000193.
    • (2008) PLoS Comput Biol , vol.4
    • Yan, J.1    Wang, H.2    Liu, Y.3    Shao, C.4
  • 153
    • 69249229772 scopus 로고    scopus 로고
    • The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
    • Yang B, Zwaans BM, Eckersdorff M, Lombard DB. (2009). The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 8: 2662-2263.
    • (2009) Cell Cycle , vol.8 , pp. 2662-2663
    • Yang, B.1    Zwaans, B.M.2    Eckersdorff, M.3    Lombard, D.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.