-
2
-
-
84922470565
-
Au nanoparticles–3D graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide
-
COI: 1:CAS:528:DC%2BC2MXmvVyitQ%3D%3D
-
Li JL, Xie JL, Gao LX, Li CM. Au nanoparticles–3D graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide. ACS Appl Mater Interfaces. 2015;7:2726–34.
-
(2015)
ACS Appl Mater Interfaces
, vol.7
, pp. 2726-2734
-
-
Li, J.L.1
Xie, J.L.2
Gao, L.X.3
Li, C.M.4
-
3
-
-
84937699233
-
Multifunctional janus hematite–silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose
-
COI: 1:CAS:528:DC%2BC2MXhtVOnsbzI
-
Lu C, Liu XJ, Li YF, Yu F, Tang LH, Hu YJ, et al. Multifunctional janus hematite–silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl Mater Interfaces. 2015;7:15395–402.
-
(2015)
ACS Appl Mater Interfaces
, vol.7
, pp. 15395-15402
-
-
Lu, C.1
Liu, X.J.2
Li, Y.F.3
Yu, F.4
Tang, L.H.5
Hu, Y.J.6
-
4
-
-
84903989154
-
Synthesis, characterization and heterogeneous catalytic activity of diamine-modified silica-coated magnetite-polyoxometalate nanoparticles as a novel magnetically-recoverable nanocatalyst
-
COI: 1:CAS:528:DC%2BC2cXhtFGmtbbE
-
Shahbazi F, Amani K. Synthesis, characterization and heterogeneous catalytic activity of diamine-modified silica-coated magnetite-polyoxometalate nanoparticles as a novel magnetically-recoverable nanocatalyst. Catal Commun. 2014;55:57–64.
-
(2014)
Catal Commun
, vol.55
, pp. 57-64
-
-
Shahbazi, F.1
Amani, K.2
-
5
-
-
84946601419
-
High efficient chromogenic catalysis of tetramethylbenzidine with horseradish peroxidase immobilized magnetic nanoparticles
-
COI: 1:CAS:528:DC%2BC2MXhsl2gsbjF
-
Kim S, Lee J, Jang S, Lee H, Sung D, Chang JH. High efficient chromogenic catalysis of tetramethylbenzidine with horseradish peroxidase immobilized magnetic nanoparticles. Biochem Eng J. 2016;105:406–11.
-
(2016)
Biochem Eng J
, vol.105
, pp. 406-411
-
-
Kim, S.1
Lee, J.2
Jang, S.3
Lee, H.4
Sung, D.5
Chang, J.H.6
-
6
-
-
84941934267
-
Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts
-
Nadejdea C, Neamtua M, Schneiderb RJ, Hodoroabab VD, Ababeic G, Panne U. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts. Appl Surf Sci. 2015;352:42–8.
-
(2015)
Appl Surf Sci
, vol.352
, pp. 42-48
-
-
Nadejdea, C.1
Neamtua, M.2
Schneiderb, R.J.3
Hodoroabab, V.D.4
Ababeic, G.5
Panne, U.6
-
8
-
-
84915747729
-
2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions
-
COI: 1:CAS:528:DC%2BC2cXitVWht7fE
-
2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J Mol Catal A-Chem. 2015;398:58–64.
-
(2015)
J Mol Catal A-Chem
, vol.398
, pp. 58-64
-
-
Azgomi, N.1
Mokhtary, M.2
-
9
-
-
84926688463
-
Integrated nanocatalysts: a unique class of heterogeneous catalysts
-
COI: 1:CAS:528:DC%2BC2MXks12ht74%3D
-
Gawande MB, Zboril R, Malgras V, Yamauchi Y. Integrated nanocatalysts: a unique class of heterogeneous catalysts. J Mater Chem A. 2015;3:8241–5.
-
(2015)
J Mater Chem A
, vol.3
, pp. 8241-8245
-
-
Gawande, M.B.1
Zboril, R.2
Malgras, V.3
Yamauchi, Y.4
-
10
-
-
84910599922
-
The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside
-
COI: 1:CAS:528:DC%2BC2cXhvVOku7zI
-
Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS. The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside. Exp Neurol. 2015;263:235–43.
-
(2015)
Exp Neurol
, vol.263
, pp. 235-243
-
-
Garry, P.S.1
Ezra, M.2
Rowland, M.J.3
Westbrook, J.4
Pattinson, K.T.S.5
-
11
-
-
84907766487
-
Vascular oxidative stress, nitric oxide and atherosclerosis
-
COI: 1:CAS:528:DC%2BC2cXhsFGgsb3I
-
Li HG, Horke S, Forstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237:208–19.
-
(2014)
Atherosclerosis
, vol.237
, pp. 208-219
-
-
Li, H.G.1
Horke, S.2
Forstermann, U.3
-
12
-
-
85012056742
-
Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction
-
COI: 1:CAS:528:DC%2BC2MXhtFyhur3N
-
Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomol. 2015;5:472–84.
-
(2015)
Biomol
, vol.5
, pp. 472-484
-
-
Weidinger, A.1
Kozlov, A.V.2
-
13
-
-
84942579482
-
Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics
-
COI: 1:CAS:528:DC%2BC2MXhtlKktb%2FI
-
Bonavida B, Garban H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics. Redox Bio. 2015;6:486–94.
-
(2015)
Redox Bio
, vol.6
, pp. 486-494
-
-
Bonavida, B.1
Garban, H.2
-
14
-
-
77951660055
-
The 20th aspen cancer conference: mechanisms of toxicity, carcinogenesis, cancer prevention, and cancer therapy 2005
-
COI: 1:CAS:528:DC%2BC3cXktVCls7s%3D
-
Sander M, Slaga TJ, Harris CC. The 20th aspen cancer conference: mechanisms of toxicity, carcinogenesis, cancer prevention, and cancer therapy 2005. Mol Carcinog. 2010;49:410–28.
-
(2010)
Mol Carcinog
, vol.49
, pp. 410-428
-
-
Sander, M.1
Slaga, T.J.2
Harris, C.C.3
-
15
-
-
84902124230
-
Oxidative stress, redox signaling, and autophagy: cell death versus survival
-
COI: 1:CAS:528:DC%2BC2cXpsVemtbo%3D
-
Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, Razo LM, Quintanilla-Vega B, et al. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Sign. 2014;21:66–85.
-
(2014)
Antioxid Redox Sign
, vol.21
, pp. 66-85
-
-
Navarro-Yepes, J.1
Burns, M.2
Anandhan, A.3
Khalimonchuk, O.4
Razo, L.M.5
Quintanilla-Vega, B.6
-
16
-
-
84872393944
-
Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states
-
COI: 1:CAS:528:DC%2BC38XhvVSqt7zJ
-
Wang B, Yin JJ, Zhou XY, Kurash I, Chai ZF, Zhao YL, et al. Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states. J Phys Chem C. 2013;117:383–92.
-
(2013)
J Phys Chem C
, vol.117
, pp. 383-392
-
-
Wang, B.1
Yin, J.J.2
Zhou, X.Y.3
Kurash, I.4
Chai, Z.F.5
Zhao, Y.L.6
-
17
-
-
84922370436
-
Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid
-
COI: 1:CAS:528:DC%2BC2cXitFegt73P
-
Wang B, Zhou XY, Wang DQ, Yin JJ, Chen HQ, Gao XF, et al. Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid. Nanoscale. 2015;7:2651–8.
-
(2015)
Nanoscale
, vol.7
, pp. 2651-2658
-
-
Wang, B.1
Zhou, X.Y.2
Wang, D.Q.3
Yin, J.J.4
Chen, H.Q.5
Gao, X.F.6
-
18
-
-
58249137748
-
Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria
-
COI: 1:CAS:528:DC%2BD1MXps1eisA%3D%3D
-
Miot J, Benzerara K, Morin G, Kappler A, Bernard S, Obst M, et al. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim Cosmochim Acta. 2009;73:696–711.
-
(2009)
Geochim Cosmochim Acta
, vol.73
, pp. 696-711
-
-
Miot, J.1
Benzerara, K.2
Morin, G.3
Kappler, A.4
Bernard, S.5
Obst, M.6
-
19
-
-
68149169007
-
What is the real physiological NO concentration in vivo?
-
COI: 1:CAS:528:DC%2BD1MXps1Wlurw%3D
-
Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009;21:92–103.
-
(2009)
Nitric Oxide
, vol.21
, pp. 92-103
-
-
Hall, C.N.1
Garthwaite, J.2
-
20
-
-
33846427759
-
Nitric oxide red blood cell membrane permeability at high and low oxygen tension
-
COI: 1:CAS:528:DC%2BD2sXhtVaqtLY%3D
-
Huang KT, Huang Z, Kim-Shapiro DB. Nitric oxide red blood cell membrane permeability at high and low oxygen tension. Nitric Oxide. 2007;16:209–16.
-
(2007)
Nitric Oxide
, vol.16
, pp. 209-216
-
-
Huang, K.T.1
Huang, Z.2
Kim-Shapiro, D.B.3
-
21
-
-
33745323369
-
Visualization of nitric oxide in living cells by a copper-based fluorescent probe
-
COI: 1:CAS:528:DC%2BD28XlvFGjs7w%3D
-
Lim MH, Xu D, Lippard SJ. Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat Chem Biol. 2006;2:375–80.
-
(2006)
Nat Chem Biol
, vol.2
, pp. 375-380
-
-
Lim, M.H.1
Xu, D.2
Lippard, S.J.3
-
22
-
-
77952695713
-
Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe
-
COI: 1:CAS:528:DC%2BC3cXmsVOrsLY%3D
-
McQuade LE, Mab J, Lowe G, Ghatpande A, Gelperin A, Lippard SJ. Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe. Proc Nat Acad Sci USA. 2010;107:8525–30.
-
(2010)
Proc Nat Acad Sci USA
, vol.107
, pp. 8525-8530
-
-
McQuade, L.E.1
Mab, J.2
Lowe, G.3
Ghatpande, A.4
Gelperin, A.5
Lippard, S.J.6
-
23
-
-
27744603998
-
The ESR method to determine nitric oxide in plants
-
Yang C, Cao YL, Tao Y, Zhao BL. The ESR method to determine nitric oxide in plants. Methods Enzymol. 2005;396:84–92.
-
(2005)
Methods Enzymol
, vol.396
, pp. 84-92
-
-
Yang, C.1
Cao, Y.L.2
Tao, Y.3
Zhao, B.L.4
-
24
-
-
0036043650
-
Analytical implications of iron dithiocarbamates for measurement of nitric oxide
-
COI: 1:CAS:528:DC%2BD38XotFejsbs%3D
-
Samouilov A, Zweier JL. Analytical implications of iron dithiocarbamates for measurement of nitric oxide. Methods Enzymol. 2002;352:506–22.
-
(2002)
Methods Enzymol
, vol.352
, pp. 506-522
-
-
Samouilov, A.1
Zweier, J.L.2
-
25
-
-
0001120887
-
-
Feelisch M, Stamler JS, (eds), John Wiley and Sons Ltd, New York
-
Kikuchi K, Nagano T, Beckman JS. In: Feelisch M, Stamler JS, editors. Methods in nitric oxide research. New York: John Wiley and Sons Ltd; 1996. p. 479–88.
-
(1996)
Methods in nitric oxide research
, pp. 479-488
-
-
Kikuchi, K.1
Nagano, T.2
Beckman, J.S.3
-
26
-
-
77950587501
-
Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine
-
COI: 1:CAS:528:DC%2BC3cXkt1GrtLw%3D
-
Zeng TQ, Chen WW, Cirtiu CM, Moores A, Song GH, Li CJ. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem. 2010;12:570–3.
-
(2010)
Green Chem
, vol.12
, pp. 570-573
-
-
Zeng, T.Q.1
Chen, W.W.2
Cirtiu, C.M.3
Moores, A.4
Song, G.H.5
Li, C.J.6
-
27
-
-
77952409644
-
Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis
-
COI: 1:CAS:528:DC%2BC3cXlsFCnt78%3D
-
Shylesh S, Schünemann V, Thiel WR. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed. 2010;49:3428–59.
-
(2010)
Angew Chem Int Ed
, vol.49
, pp. 3428-3459
-
-
Shylesh, S.1
Schünemann, V.2
Thiel, W.R.3
-
28
-
-
34548460337
-
Intrinsic peroxidase-like activity of ferromagnetic nanoparticles
-
COI: 1:CAS:528:DC%2BD2sXpvVOksLg%3D
-
Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.
-
(2007)
Nat Nanotechnol
, vol.2
, pp. 577-583
-
-
Gao, L.Z.1
Zhuang, J.2
Nie, L.3
Zhang, J.B.4
Zhang, Y.5
Gu, N.6
-
31
-
-
84868590458
-
4 nanoparticles for selective detection and simultaneous determination of various pesticides
-
COI: 1:CAS:528:DC%2BC38XhsVeitrnL
-
4 nanoparticles for selective detection and simultaneous determination of various pesticides. Anal Chem. 2012;84:9492–7.
-
(2012)
Anal Chem
, vol.84
, pp. 9492-9497
-
-
Guan, G.J.1
Yang, L.2
Mei, Q.S.3
Zhang, K.4
Zhang, Z.P.5
Han, M.Y.6
-
33
-
-
0027481965
-
The reaction of NO with superoxide
-
COI: 1:CAS:528:DyaK3sXmsVeit74%3D
-
Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun. 1993;18:195–8.
-
(1993)
Free Radic Res Commun
, vol.18
, pp. 195-198
-
-
Huie, R.E.1
Padmaja, S.2
-
34
-
-
84903434034
-
Lung macrophages “digest” carbon nanotubes using a superoxide/peroxynitrite oxidative pathway
-
COI: 1:CAS:528:DC%2BC2cXosl2qs7Y%3D
-
Kagan VE, Kapralov AA, Croix CMT, Watkins SC, Kisin ER, Kotchey GP, et al. Lung macrophages “digest” carbon nanotubes using a superoxide/peroxynitrite oxidative pathway. ACS Nano. 2014;8:5610–21.
-
(2014)
ACS Nano
, vol.8
, pp. 5610-5621
-
-
Kagan, V.E.1
Kapralov, A.A.2
Croix, C.M.T.3
Watkins, S.C.4
Kisin, E.R.5
Kotchey, G.P.6
-
35
-
-
13244281710
-
Peroxynitrite and drug-dependent toxicity
-
COI: 1:CAS:528:DC%2BD2MXhtVOrsLY%3D
-
Denicola A, Radi R. Peroxynitrite and drug-dependent toxicity. Toxicology. 2005;208:273–88.
-
(2005)
Toxicology
, vol.208
, pp. 273-288
-
-
Denicola, A.1
Radi, R.2
-
36
-
-
3042792520
-
Optimization of peroxynitrite–luminol chemiluminescence system for detecting peroxynitrite in cell culture solution exposed to carbon disulphide
-
Chen SL, Jian L, Lang HQ. Optimization of peroxynitrite–luminol chemiluminescence system for detecting peroxynitrite in cell culture solution exposed to carbon disulphide. Luminescence. 2003;18:249–53.
-
(2003)
Luminescence
, vol.18
, pp. 249-253
-
-
Chen, S.L.1
Jian, L.2
Lang, H.Q.3
-
37
-
-
0028070186
-
Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions
-
COI: 1:CAS:528:DyaK2cXksFWrtbY%3D
-
Lewis RS, Deen WM. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol. 1994;7:568–74.
-
(1994)
Chem Res Toxicol
, vol.7
, pp. 568-574
-
-
Lewis, R.S.1
Deen, W.M.2
-
38
-
-
0029037495
-
The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide
-
Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268:699–722.
-
(1995)
Am J Physiol
, vol.268
, pp. 699-722
-
-
Pryor, W.A.1
Squadrito, G.L.2
-
39
-
-
70349768357
-
Analytical chemistry of nitric oxide
-
COI: 1:CAS:528:DC%2BD1MXpsFaqtro%3D
-
Hetrick EM, Schoenfisch MH. Analytical chemistry of nitric oxide. Annu Rev Anal Chem. 2009;2:409–33.
-
(2009)
Annu Rev Anal Chem
, vol.2
, pp. 409-433
-
-
Hetrick, E.M.1
Schoenfisch, M.H.2
-
40
-
-
0029840829
-
In: Packer L (ed) Methods in enzymology. Academic Press
-
Nims RW, Cook JC, Krishna MC (1996) In: Packer L (ed) Methods in enzymology. Academic Press, pp 93–105
-
(1996)
pp 93–105
-
-
Nims, R.W.1
Cook, J.C.2
Krishna, M.C.3
-
41
-
-
67349142639
-
Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide
-
COI: 1:CAS:528:DC%2BD1MXlt12rtLs%3D
-
Xue XF, Hanna K, Deng NS. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. J Hazard Mater. 2009;166:407–14.
-
(2009)
J Hazard Mater
, vol.166
, pp. 407-414
-
-
Xue, X.F.1
Hanna, K.2
Deng, N.S.3
-
44
-
-
78449247646
-
Photochemical production and consumption mechanisms of nitric oxide in seawater
-
COI: 1:CAS:528:DC%2BC3cXht12lt7vP
-
Olasehinde EF, Takeda K, Sakugawa H. Photochemical production and consumption mechanisms of nitric oxide in seawater. Environ Sci Technol. 2010;44:8403–8.
-
(2010)
Environ Sci Technol
, vol.44
, pp. 8403-8408
-
-
Olasehinde, E.F.1
Takeda, K.2
Sakugawa, H.3
|