-
1
-
-
84871393354
-
Bob: A free signal processing and machine learning toolbox for researchers
-
A. Anjos, L. E. Shafey, R. Wallace, M. Günther, C. McCool, and S. Marcel. Bob: A free signal processing and machine learning toolbox for researchers. In ACM International Conference on Multimedia, pages 1449-1452, 2012.
-
(2012)
ACM International Conference on Multimedia
, pp. 1449-1452
-
-
Anjos, A.1
Shafey, L.E.2
Wallace, R.3
Günther, M.4
McCool, C.5
Marcel, S.6
-
2
-
-
84887356895
-
POOF: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation
-
T. Berg and P. N. Belhumeur. POOF: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation. In CVPR, 2013.
-
(2013)
CVPR
-
-
Berg, T.1
Belhumeur, P.N.2
-
3
-
-
84911399752
-
Birdsnap: Large-scale fine-grained visual categorization of birds
-
T. Berg, J. Liu, S. W. Lee, M. L. Alexander, D. W. Jacobs, and P. N. Belhumeur. Birdsnap: Large-scale fine-grained visual categorization of birds. In CVPR, pages 2019-2026, 2014.
-
(2014)
CVPR
, pp. 2019-2026
-
-
Berg, T.1
Liu, J.2
Lee, S.W.3
Alexander, M.L.4
Jacobs, D.W.5
Belhumeur, P.N.6
-
4
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24 (2): 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
84898771336
-
Symbiotic segmentation and part localization for fine-grained categorization
-
Y. Chai, V. Lempitsky, and A. Zisserman. Symbiotic segmentation and part localization for fine-grained categorization. In ICCV, 2013.
-
(2013)
ICCV
-
-
Chai, Y.1
Lempitsky, V.2
Zisserman, A.3
-
6
-
-
84898771336
-
Symbiotic segmentation and part localization for fine-grained categorization
-
Y. Chai, V. Lempitsky, and A. Zisserman. Symbiotic segmentation and part localization for fine-grained categorization. In ICCV, 2013.
-
(2013)
ICCV
-
-
Chai, Y.1
Lempitsky, V.2
Zisserman, A.3
-
7
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
8
-
-
84856640018
-
Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance
-
R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In ICCV, 2011.
-
(2011)
ICCV
-
-
Farrell, R.1
Oza, O.2
Zhang, N.3
Morariu, V.I.4
Darrell, T.5
Davis, L.S.6
-
9
-
-
84898802327
-
Fine-grained categorization by alignments
-
E. Gavves, B. Fernando, C. G. Snoek, A. W. Smeulders, and T. Tuytelaars. Fine-grained categorization by alignments. In ICCV, 2013.
-
(2013)
ICCV
-
-
Gavves, E.1
Fernando, B.2
Snoek, C.G.3
Smeulders, A.W.4
Tuytelaars, T.5
-
10
-
-
84956636710
-
Fine-grained bird species recognition via hierarchical subset learning
-
Z. Ge, C. McCool, C. Sanderson, A. Bewley, Z. Chen, and P. Corke. Fine-grained bird species recognition via hierarchical subset learning. In IEEE International Conference on Image Processing (ICIP), pages 561-565, 2015.
-
(2015)
IEEE International Conference on Image Processing (ICIP)
, pp. 561-565
-
-
Ge, Z.1
McCool, C.2
Sanderson, C.3
Bewley, A.4
Chen, Z.5
Corke, P.6
-
12
-
-
84956616783
-
Modelling local deep convolutional neural network features to improve fine-grained image classification
-
Z. Ge, C. McCool, C. Sanderson, and P. Corke. Modelling local deep convolutional neural network features to improve fine-grained image classification. In IEEE Int. Conference on Image Processing (ICIP), pages 4112-4116, 2015.
-
(2015)
IEEE Int. Conference on Image Processing (ICIP)
, pp. 4112-4116
-
-
Ge, Z.1
McCool, C.2
Sanderson, C.3
Corke, P.4
-
13
-
-
84951950853
-
Subset feature learning for fine-grained classification
-
Z. Ge, C. McCool, C. Sanderson, and P. Corke. Subset feature learning for fine-grained classification. In DeepVision Workshop, Computer Vision and Pattern Recognition Workshops (CVPRW), pages 46-52, 2015.
-
(2015)
DeepVision Workshop, Computer Vision and Pattern Recognition Workshops (CVPRW)
, pp. 46-52
-
-
Ge, Z.1
McCool, C.2
Sanderson, C.3
Corke, P.4
-
14
-
-
84981252354
-
Lifeclef plant identification task 2014
-
CEUR-WS
-
H. Göeau, A. Joly, P. Bonnet, S. Selmi, J.-F. Molino, D. Barthélémy, and N. Boujemaa. Lifeclef plant identification task 2014. InWorking Notes for CLEF 2014 Conference, pages 598-615. CEUR-WS, 2014.
-
(2014)
Working Notes for CLEF 2014 Conference
, pp. 598-615
-
-
Göeau, H.1
Joly, A.2
Bonnet, P.3
Selmi, S.4
Molino, J.-F.5
Barthélémy, D.6
Boujemaa, N.7
-
15
-
-
0000856338
-
The meta-pi network: Building distributed knowledge representations for robust multisource pattern recognition
-
J. B. Hampshire II and A. Waibel. The meta-pi network: Building distributed knowledge representations for robust multisource pattern recognition. PAMI, 14 (7): 751-769, 1992.
-
(1992)
PAMI
, vol.14
, Issue.7
, pp. 751-769
-
-
Hampshire, I.I.J.B.1
Waibel, A.2
-
16
-
-
0001940458
-
Adaptive mixtures of local experts
-
R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3 (1): 79-87, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.1
, pp. 79-87
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
17
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM International Conference on Multimedia, pages 675-678, 2014.
-
(2014)
ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
19
-
-
84959188579
-
Deep LAC: Deep localization, alignment and classification for fine-grained recognition
-
D. Lin, X. Shen, C. Lu, and J. Jia. Deep LAC: Deep localization, alignment and classification for fine-grained recognition. In CVPR, pages 1666-1674, 2015.
-
(2015)
CVPR
, pp. 1666-1674
-
-
Lin, D.1
Shen, X.2
Lu, C.3
Jia, J.4
-
21
-
-
84973926705
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CVPR, 2014.
-
(2014)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
22
-
-
84878084353
-
-
Computation & Neural Systems Technical Report, California Institute of Technology, number CNS-TR-2011-001
-
C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset. In Computation & Neural Systems Technical Report, California Institute of Technology, number CNS-TR-2011-001, 2011.
-
(2011)
The Caltech-UCSD Birds-200-2011 Dataset
-
-
Wah, C.1
Branson, S.2
Welinder, P.3
Perona, P.4
Belongie, S.5
-
23
-
-
84906514027
-
Partbased R-CNNs for fine-grained category detection
-
N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Partbased R-CNNs for fine-grained category detection. In ECCV, pages 834-849. 2014.
-
(2014)
ECCV
, pp. 834-849
-
-
Zhang, N.1
Donahue, J.2
Girshick, R.3
Darrell, T.4
-
24
-
-
84898819241
-
Deformable part descriptors for fine-grained recognition and attribute prediction
-
N. Zhang, R. Farrell, F. Iandola, and T. Darrell. Deformable part descriptors for fine-grained recognition and attribute prediction. In ICCV, 2013.
-
(2013)
ICCV
-
-
Zhang, N.1
Farrell, R.2
Iandola, F.3
Darrell, T.4
|