메뉴 건너뛰기




Volumn 2016-June, Issue , 2016, Pages 1634-1641

Deep learning for human part discovery in images

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMOBILE BODIES; CONVOLUTION; IMAGE CLASSIFICATION; IMAGE SEGMENTATION; NEURAL NETWORKS; ROBOTICS; ROBOTS;

EID: 84977574249     PISSN: 10504729     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICRA.2016.7487304     Document Type: Conference Paper
Times cited : (96)

References (29)
  • 2
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. ICLR, 2015.
    • (2015) ICLR
    • Chen, L.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 3
    • 84911421600 scopus 로고    scopus 로고
    • Detect what you can: Detecting and representing objects using holistic models and body parts
    • Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun, and Alan Yuille. Detect what you can: Detecting and representing objects using holistic models and body parts. In CVPR, 2014.
    • (2014) CVPR
    • Chen, X.1    Mottaghi, R.2    Liu, X.3    Fidler, S.4    Urtasun, R.5    Yuille, A.6
  • 4
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Tobias Springenberg, J.2    Brox, T.3
  • 5
    • 84937964776 scopus 로고    scopus 로고
    • Discriminative unsupervised feature learning with convolutional neural networks
    • Alexey Dosovitskiy, Jost Tobias Springenberg, Martin A. Riedmiller, and Thomas Brox. Discriminative unsupervised feature learning with convolutional neural networks. In NIPS, pages 766-774, 2014.
    • (2014) NIPS , pp. 766-774
    • Dosovitskiy, A.1    Tobias Springenberg, J.2    Riedmiller, M.A.3    Brox, T.4
  • 7
    • 84955316677 scopus 로고    scopus 로고
    • arXiv preprint arXiv: 1504. 08083
    • Ross Girshick. Fast R-CNN. ArXiv preprint arXiv: 1504. 08083, 2015.
    • (2015) Fast R-CNN
    • Girshick, R.1
  • 8
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 9
    • 84906344142 scopus 로고    scopus 로고
    • Learning rich features from RGB-D images for object detection and segmentation
    • Saurabh Gupta, Ross B. Girshick, Pablo Andrés Arbeláez, and Jitendra Malik. Learning rich features from RGB-D images for object detection and segmentation. In ECCV, pages 345-360, 2014.
    • (2014) ECCV , pp. 345-360
    • Gupta, S.1    Girshick, R.B.2    Andrés Arbeláez, P.3    Malik, J.4
  • 11
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • Bharath Hariharan, Pablo Andrés Arbeláez, Ross B. Girshick, and Jitendra Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Andrés Arbeláez, P.2    Girshick, R.B.3    Malik, J.4
  • 12
    • 85083953149 scopus 로고    scopus 로고
    • Learning human pose estimation features with convolutional networks
    • Ajrun Jain, Jonathan Tompson, Mykhaylo Andriluka, Graham W. Taylor, and Christoph Bregler. Learning human pose estimation features with convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Jain, A.1    Tompson, J.2    Andriluka, M.3    Taylor, G.W.4    Bregler, C.5
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • nov
    • Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. CVPR, nov 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 17
    • 85088060032 scopus 로고    scopus 로고
    • Parsing semantic parts of cars using graphical models and segment appearance consistency
    • Wenhao Lu, Xiaochen Lian, and Alan Yuille. Parsing semantic parts of cars using graphical models and segment appearance consistency. In BMVC, 2014.
    • (2014) BMVC
    • Lu, W.1    Lian, X.2    Yuille, A.3
  • 18
    • 84863059942 scopus 로고    scopus 로고
    • Are spatial and global constraints really necessary for segmentation
    • Aurelien Lucchi, Yunpeng Li, Xavier Boix, Kevin Smith, and Pascal Fua. Are spatial and global constraints really necessary for segmentation In ICCV, pages 9-16, 2011.
    • (2011) ICCV , pp. 9-16
    • Lucchi, A.1    Li, Y.2    Boix, X.3    Smith, K.4    Fua, P.5
  • 19
    • 84856631928 scopus 로고    scopus 로고
    • Object detection and segmentation from joint embedding of parts and pixels
    • Michael Maire, Stella X. Yu, and Pietro Perona. Object detection and segmentation from joint embedding of parts and pixels. In ICCV, 2011.
    • (2011) ICCV
    • Maire, M.1    Yu, S.X.2    Perona, P.3
  • 20
    • 71149101357 scopus 로고    scopus 로고
    • Multi-class image segmentation using conditional random fields and global classification
    • New York, NY, USA. ACM
    • Nils Plath, Marc Toussaint, and Shinichi Nakajima. Multi-class image segmentation using conditional random fields and global classification. In ICML, pages 817-824, New York, NY, USA, 2009. ACM.
    • (2009) ICML , pp. 817-824
    • Plath, N.1    Toussaint, M.2    Nakajima, S.3
  • 23
    • 84973911222 scopus 로고    scopus 로고
    • Part detector discovery in deep convolutional neural networks
    • Marcel Simon, Erik Rodner, and Joachim Denzler. Part detector discovery in deep convolutional neural networks. In ACCV, volume 2, pages 162-177, 2014.
    • (2014) ACCV , vol.2 , pp. 162-177
    • Simon, M.1    Rodner, E.2    Denzler, J.3
  • 24
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 26
    • 84959240338 scopus 로고    scopus 로고
    • Efficient object localization using convolutional networks
    • Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object localization using convolutional networks. CVPR, 2015.
    • (2015) CVPR
    • Tompson, J.1    Goroshin, R.2    Jain, A.3    LeCun, Y.4    Bregler, C.5
  • 28
    • 84956617559 scopus 로고    scopus 로고
    • Partbased R-CNNs for fine-grained category detection
    • Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Darrell. Partbased R-CNNs for fine-grained category detection. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 29
    • 84911443783 scopus 로고    scopus 로고
    • PANDA: Pose aligned networks for deep attribute modeling
    • Ning Zhang, Manohar Paluri, Marc'Aurelio Ranzato, Trevor Darrell, and Lubomir D. Bourdev. PANDA: pose aligned networks for deep attribute modeling. In CVPR, pages 1637-1644, 2014.
    • (2014) CVPR , pp. 1637-1644
    • Zhang, N.1    Paluri, M.2    Ranzato, M.3    Darrell, T.4    Bourdev, L.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.