-
2
-
-
0009973895
-
-
Master’s thesis, Ludwig-Maximilians-University Munich
-
Andreas Abel. A semantic analysis of structural recursion. Master’s thesis, Ludwig-Maximilians-University Munich, 1999. http://www.informatik.uni-muenchen.de/~abel/publications/.
-
(1999)
A Semantic Analysis of Structural Recursion
-
-
Abel, A.1
-
6
-
-
84956864074
-
Monadic presentations of lambda terms using generalized inductive types
-
Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using generalized inductive types. In Computer Science Logic 99, 1999.
-
(1999)
Computer Science Logic 99
-
-
Altenkirch, T.1
Reus, B.2
-
8
-
-
84977521496
-
-
1999. Wilfried Buchholz. The wμ+1-rule. In Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, of Lecture Notes in Mathematics, pages
-
Frederic Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. Inductive data type systems. To appear in Theoretical Computer Science, 1999. Wilfried Buchholz. The wμ+1-rule. In Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, volume 897 of Lecture Notes in Mathematics, pages 188-233. 1981.
-
(1981)
Inductive Data Type Systems. to Appear in Theoretical Computer Science
, vol.897
, pp. 188-233
-
-
Blanqui, F.1
Jouannaud, J.-P.2
Okada, M.3
-
9
-
-
84944233413
-
Inductively defined types
-
P. Lof and G. Mints, editors, of Lecture Notes in Computer Science
-
Thierry Coquand and Christine Mohring. Inductively defined types. In P. Lof and G. Mints, editors, LNCS 389, volume 417 of Lecture Notes in Computer Science, pages 50-66. Springer-Verlag, 1989.
-
(1989)
LNCS 389
, vol.417
, pp. 50-66
-
-
Coquand, T.1
Mohring, C.2
-
10
-
-
84947980041
-
-
LNCS, Berlin, Springer-Verlag
-
Infinite objects in type theory. LNCS, pages 62-78, Berlin, 1994. Springer-Verlag.
-
(1994)
Infinite Objects in Type Theory
, pp. 62-78
-
-
-
12
-
-
0001845685
-
Inductive and coinductive types with iteration and recursion
-
Herman Geuvers. Inductive and coinductive types with iteration and recursion. In Workshop on Types for Proofs and Programs, Bâstad, pages 193-217, 1992.
-
(1992)
Workshop on Types for Proofs and Programs
, pp. 193-217
-
-
Geuvers, H.1
-
13
-
-
0004099873
-
-
PhD thesis, Universite Paris VII, 1972. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press
-
J. Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithétique d’ordre supérieur. PhD thesis, Universite Paris VII, 1972. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.
-
(1989)
Interprétation Fonctionelle Et élimination Des Coupures Dans l’arithétique d’ordre supérieur
-
-
Girard, J.Y.1
-
15
-
-
3042994061
-
Functorial ML
-
C.B. Jay, G. Belle, and E. Moggi, Functorial ML. Journal of Functional Programming, 8(6):573-619, 1998.
-
(1998)
Journal of Functional Programming
, vol.8
, Issue.6
, pp. 573-619
-
-
Jay, C.B.1
Belle, G.2
Moggi, E.3
-
17
-
-
0031582016
-
Equational theories for inductive types. Annals of Pure and
-
Ralph Loader. Equational theories for inductive types. Annals of Pure and, Applied Logic, 84:175-217, 1997.
-
(1997)
Applied Logic
, vol.84
, pp. 175-217
-
-
Loader, R.1
-
22
-
-
84972537572
-
Reynolds. Polymorphism is not set-theoretic
-
Gilles Kahn, David B. MacQueen, and Gordon D. Plotkin, editors, of Lecture Notes in Computer Science, Berlin, Springer-Verlag
-
John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B. MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages 145-156, Berlin, 1984. Springer-Verlag.
-
(1984)
Semantics of Data Types
, vol.173
, pp. 145-156
-
-
John, C.1
-
23
-
-
0001748856
-
Intensional interpretations of functionals of finite type I
-
W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic, 32(2):198-212, June 1967.
-
(1967)
Journal of Symbolic Logic
, vol.32
, Issue.2
, pp. 198-212
-
-
Tait, W.W.1
|