메뉴 건너뛰기




Volumn 8, Issue 5, 2016, Pages 734-748

Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model

Author keywords

deep belief network (DBN); hydropedology; macroscopic cellular automata (MCA); multi layer perceptron (MLP); soil moisture; soil moisture sensor network; uncertainty assessment

Indexed keywords

CELLULAR AUTOMATON; HYDROLOGY; MOISTURE CONTENT; PEDOLOGY; SOIL MOISTURE; SPATIOTEMPORAL ANALYSIS; UNCERTAINTY ANALYSIS;

EID: 84977156284     PISSN: 16746767     EISSN: 21947783     Source Type: Journal    
DOI: 10.1007/s40333-016-0049-0     Document Type: Article
Times cited : (143)

References (52)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716–723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 84875544018 scopus 로고    scopus 로고
    • Off- and on-ground GPR techniques for field-scale soil moisture mapping
    • Ardekani M R M. 2013. Off- and on-ground GPR techniques for field-scale soil moisture mapping. Geoderma, 200–201: 55–66.
    • (2013) Geoderma , vol.200-201 , pp. 55-66
    • Ardekani, M.R.M.1
  • 3
    • 84881337376 scopus 로고    scopus 로고
    • SCIDDICA-SS3: a new version of cellular automata model for simulating fast moving landslides
    • Avolio M V, Di Gregorio S, Lupiano V, et al. 2013. SCIDDICA-SS3: a new version of cellular automata model for simulating fast moving landslides. Journal of Supercomputing, 65(2): 682–696.
    • (2013) Journal of Supercomputing , vol.65 , Issue.2 , pp. 682-696
    • Avolio, M.V.1    Di Gregorio, S.2    Lupiano, V.3
  • 4
    • 84945173648 scopus 로고    scopus 로고
    • Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling
    • Bertoldi G, Della Chiesa S D, Notarnicola C, et al. 2014. Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling. Journal of Hydrology, 516: 245–257.
    • (2014) Journal of Hydrology , vol.516 , pp. 245-257
    • Bertoldi, G.D.1    Chiesa, S.D.2    Notarnicola, C.3
  • 5
    • 33845998963 scopus 로고    scopus 로고
    • Soil moisture spatial variability in experimental areas of central Italy
    • Brocca L, Morbidelli R, Melone F, et al. 2007. Soil moisture spatial variability in experimental areas of central Italy. Journal of Hydrology, 333(2–4): 356–373.
    • (2007) Journal of Hydrology , vol.333 , Issue.2-4 , pp. 356-373
    • Brocca, L.1    Morbidelli, R.2    Melone, F.3
  • 6
    • 77955280283 scopus 로고    scopus 로고
    • Spatial-temporal variability of soil moisture and its estimation across scales
    • Brocca L, Melone F, Moramarco T, et al. 2010. Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46(2): W02516, doi: 10.1029/2009WR008016.
    • (2010) Water Resources Research , vol.46 , Issue.2 , pp. W02516
    • Brocca, L.1    Melone, F.2    Moramarco, T.3
  • 8
  • 9
    • 69949169618 scopus 로고    scopus 로고
    • Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content
    • Delbari M, Afrasiab P, Loiskandl W. 2009. Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. CATENA, 79(2): 163–169.
    • (2009) CATENA , vol.79 , Issue.2 , pp. 163-169
    • Delbari, M.1    Afrasiab, P.2    Loiskandl, W.3
  • 10
    • 0343415082 scopus 로고    scopus 로고
    • Space-time self-organization of mesoscale rainfall and soil moisture
    • D’Odorico P, Rodriguez-Iturbe I. 2000. Space-time self-organization of mesoscale rainfall and soil moisture. Advances in Water Resources, 23(4): 349–357.
    • (2000) Advances in Water Resources , vol.23 , Issue.4 , pp. 349-357
    • D’Odorico, P.1    Rodriguez-Iturbe, I.2
  • 11
    • 0028669912 scopus 로고
    • Multiscale modeling of spatially variable water and energy balance processes
    • Famiglietti J S, Wood E F. 1994. Multiscale modeling of spatially variable water and energy balance processes. Water Resources Research, 30(11): 3061–3078.
    • (1994) Water Resources Research , vol.30 , Issue.11 , pp. 3061-3078
    • Famiglietti, J.S.1    Wood, E.F.2
  • 12
    • 0032170697 scopus 로고    scopus 로고
    • Variability in surface soil moisture content along a hillslope transect: Rattlesnake Hill, Texas
    • Famiglietti J S, Rudnicki J W, Rodell M. 1998. Variability in surface soil moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210(1–4): 259–281.
    • (1998) Journal of Hydrology , vol.210 , Issue.1-4 , pp. 259-281
    • Famiglietti, J.S.1    Rudnicki, J.W.2    Rodell, M.3
  • 13
    • 44949233158 scopus 로고    scopus 로고
    • Modeling coupled surface-subsurface flow processes: A review
    • Furman A. 2008. Modeling coupled surface-subsurface flow processes: A review. Vadose Zone Journal, 7(2): 741–756.
    • (2008) Vadose Zone Journal , vol.7 , Issue.2 , pp. 741-756
    • Furman, A.1
  • 14
    • 84904500663 scopus 로고    scopus 로고
    • Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing
    • Gao S G, Zhu Z L, Liu S M, et al. 2014. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32: 54–66.
    • (2014) International Journal of Applied Earth Observation and Geoinformation , vol.32 , pp. 54-66
    • Gao, S.G.1    Zhu, Z.L.2    Liu, S.M.3
  • 16
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G E, Osindero S, Teh Y W. 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18(7): 1527–1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 17
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504–507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 18
    • 84926349109 scopus 로고    scopus 로고
    • Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations
    • Hu G C, Jia L. 2015. Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations. Remote Sensing, 7(3): 3056–3087.
    • (2015) Remote Sensing , vol.7 , Issue.3 , pp. 3056-3087
    • Hu, G.C.1    Jia, L.2
  • 19
    • 43049088813 scopus 로고    scopus 로고
    • Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks
    • Ivanov V Y, Bras R L, Vivoni E R. 2008. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resources Research, 44(3): W03429, doi: 10.1029/2006WR005588.
    • (2008) Water Resources Research , vol.44 , Issue.3 , pp. W03429
    • Ivanov, V.Y.1    Bras, R.L.2    Vivoni, E.R.3
  • 20
    • 84900530071 scopus 로고    scopus 로고
    • A sparse-response deep belief network based on rate distortion theory
    • Ji N N, Zhang J S, Zhang C X. 2014. A sparse-response deep belief network based on rate distortion theory. Pattern Recognition, 47(9): 3179–3191.
    • (2014) Pattern Recognition , vol.47 , Issue.9 , pp. 3179-3191
    • Ji, N.N.1    Zhang, J.S.2    Zhang, C.X.3
  • 21
    • 84901825138 scopus 로고    scopus 로고
    • A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China
    • Jin R, Li X, Yan B P, et al. 2014. A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China. IEEE Geoscience and Remote Sensing Letters, 11(11): 2015–2019.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.11 , pp. 2015-2019
    • Jin, R.1    Li, X.2    Yan, B.P.3
  • 22
    • 84908541615 scopus 로고    scopus 로고
    • Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China
    • Kang J, Li X, Jin R, et al. 2014. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China. Sensors, 14(10): 19095–19114.
    • (2014) Sensors , vol.14 , Issue.10 , pp. 19095-19114
    • Kang, J.1    Li, X.2    Jin, R.3
  • 23
    • 33748432097 scopus 로고    scopus 로고
    • Evolved neural networks based on cellular automata for sensory-motor controller
    • Kim K J, Cho S B. 2006. Evolved neural networks based on cellular automata for sensory-motor controller. Neurocomputing, 69(16–18): 2193–2207.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2193-2207
    • Kim, K.J.1    Cho, S.B.2
  • 24
    • 59949097218 scopus 로고    scopus 로고
    • Remote sensing and control of an irrigation system using a distributed wireless sensor network
    • Kim Y, Evans R G, Iversen W M. 2008. Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement, 57(7): 1379–1387.
    • (2008) IEEE Transactions on Instrumentation and Measurement , vol.57 , Issue.7 , pp. 1379-1387
    • Kim, Y.1    Evans, R.G.2    Iversen, W.M.3
  • 25
    • 84927125365 scopus 로고    scopus 로고
    • Identifying informative risk factors and predicting bone disease progression via deep belief networks
    • Li H, Li X Y, Ramanathan M, et al. 2014. Identifying informative risk factors and predicting bone disease progression via deep belief networks. Methods, 69(3): 257–265.
    • (2014) Methods , vol.69 , Issue.3 , pp. 257-265
    • Li, H.1    Li, X.Y.2    Ramanathan, M.3
  • 26
    • 84884583102 scopus 로고    scopus 로고
    • Early warning of illegal development for protected areas by integrating cellular automata with neural networks
    • Li X, Lao C H, Liu Y L, et al. 2013a. Early warning of illegal development for protected areas by integrating cellular automata with neural networks. Journal of Environmental Management, 130: 106–116.
    • (2013) Journal of Environmental Management , vol.130 , pp. 106-116
    • Li, X.1    Lao, C.H.2    Liu, Y.L.3
  • 27
    • 84881144025 scopus 로고    scopus 로고
    • Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design
    • Li X, Cheng G D, Liu S M, et al. 2013b. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bulletin of American Meteorological Society, 94(8): 1145–1160.
    • (2013) Bulletin of American Meteorological Society , vol.94 , Issue.8 , pp. 1145-1160
    • Li, X.1    Cheng, G.D.2    Liu, S.M.3
  • 29
    • 33846356116 scopus 로고    scopus 로고
    • Three-dimensional unsaturated flow modeling using cellular automata
    • Mendicino G, Senatore A, Spezzano G, et al. 2006. Three-dimensional unsaturated flow modeling using cellular automata. Water Resources Research, 42(11): W11419, doi: 10.1029/2005WR004472.
    • (2006) Water Resources Research , vol.42 , Issue.11 , pp. W11419
    • Mendicino, G.1    Senatore, A.2    Spezzano, G.3
  • 30
    • 84922669589 scopus 로고    scopus 로고
    • Cellular Automata based modeling for the assessment of ecohydrological dynamics at the hillslope scale: Preliminary results
    • Mendicino G, Pedace J, Senatore A. 2013. Cellular Automata based modeling for the assessment of ecohydrological dynamics at the hillslope scale: Preliminary results. Procedia Environmental Sciences, 19: 311–320.
    • (2013) Procedia Environmental Sciences , vol.19 , pp. 311-320
    • Mendicino, G.1    Pedace, J.2    Senatore, A.3
  • 31
    • 84922678314 scopus 로고    scopus 로고
    • Stability of an overland flow scheme in the framework of a fully coupled eco-hydrological model based on the Macroscopic Cellular Automata approach
    • Mendicino G, Pedace J, Senatore A. 2015. Stability of an overland flow scheme in the framework of a fully coupled eco-hydrological model based on the Macroscopic Cellular Automata approach. Communications in Nonlinear Science and Numerical Simulation, 21(1–3): 128–146.
    • (2015) Communications in Nonlinear Science and Numerical Simulation , vol.21 , Issue.1-3 , pp. 128-146
    • Mendicino, G.1    Pedace, J.2    Senatore, A.3
  • 32
    • 78049257327 scopus 로고    scopus 로고
    • Noise-robust realization of Turing-complete cellular automata by using neural networks with pattern representation
    • Oku M, Aihara K. 2010. Noise-robust realization of Turing-complete cellular automata by using neural networks with pattern representation. Physics Letters A, 374(48): 4859–4863.
    • (2010) Physics Letters A , vol.374 , Issue.48 , pp. 4859-4863
    • Oku, M.1    Aihara, K.2
  • 33
    • 84876317031 scopus 로고    scopus 로고
    • Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation
    • Paloscia S, Pettinato S, Santi E, et al. 2013. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134: 234–248
    • (2013) Remote Sensing of Environment , vol.134 , pp. 234-248
    • Paloscia, S.1    Pettinato, S.2    Santi, E.3
  • 34
    • 31544438583 scopus 로고    scopus 로고
    • Characterization of footprint-scale surface soil moisture variability using Gaussian and beta distribution functions during the Southern Great Plains 1997 (SGP97) hydrology experiment
    • Ryu D, Famiglietti J S. 2005. Characterization of footprint-scale surface soil moisture variability using Gaussian and beta distribution functions during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resources Research, 41(12): W12433, doi: 10.1029/2004WR003835.
    • (2005) Water Resources Research , vol.41 , Issue.12 , pp. W12433
    • Ryu, D.1    Famiglietti, J.S.2
  • 36
    • 84945173654 scopus 로고    scopus 로고
    • Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates
    • Sánchez-Ruiz S, Piles M, Sánchez N, et al. 2014. Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates. Journal of Hydrology, 516: 273–283.
    • (2014) Journal of Hydrology , vol.516 , pp. 273-283
    • Sánchez-Ruiz, S.1    Piles, M.2    Sánchez, N.3
  • 37
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber J. 2015. Deep learning in neural networks: An overview. Neural Networks, 61: 85–117.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 38
    • 70349777590 scopus 로고    scopus 로고
    • A novel approach in model-based mapping of soil water conditions at forest sites
    • Schwärzel K, Feger K H, Häntzschel J, et al. 2009. A novel approach in model-based mapping of soil water conditions at forest sites. Forest Ecology and Management, 258(10): 2163–2174.
    • (2009) Forest Ecology and Management , vol.258 , Issue.10 , pp. 2163-2174
    • Schwärzel, K.1    Feger, K.H.2    Häntzschel, J.3
  • 40
    • 77950519142 scopus 로고    scopus 로고
    • A comparison of two physics-based numerical models for simulating surface water-groundwater interactions
    • Sulis M, Meyerhoff S B, Paniconi C, et al. 2010. A comparison of two physics-based numerical models for simulating surface water-groundwater interactions. Advances in Water Resources, 33(4): 456–467.
    • (2010) Advances in Water Resources , vol.33 , Issue.4 , pp. 456-467
    • Sulis, M.1    Meyerhoff, S.B.2    Paniconi, C.3
  • 41
    • 84879172074 scopus 로고    scopus 로고
    • Temporal stability and variability of field scale soil moisture on mountainous hillslopes in Northeast Asia
    • Sur C, Jung Y, Choi M. 2013. Temporal stability and variability of field scale soil moisture on mountainous hillslopes in Northeast Asia. Geoderma, 207–208: 234–243.
    • (2013) Geoderma , vol.207-208 , pp. 234-243
    • Sur, C.1    Jung, Y.2    Choi, M.3
  • 42
    • 33646557059 scopus 로고    scopus 로고
    • RHESSys: Regional Hydro-Ecologic Simulation System: An object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling
    • Tague C L, Band L E. 2004. RHESSys: Regional Hydro-Ecologic Simulation System: An object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interactions, 8(19): 1–42.
    • (2004) Earth Interactions , vol.8 , Issue.19 , pp. 1-42
    • Tague, C.L.1    Band, L.E.2
  • 44
    • 40849140744 scopus 로고    scopus 로고
    • Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method
    • Wang C M, Zuo Q, Zhang R D. 2008. Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method. Journal of Hydrology, 352(3–4): 309–321.
    • (2008) Journal of Hydrology , vol.352 , Issue.3-4 , pp. 309-321
    • Wang, C.M.1    Zuo, Q.2    Zhang, R.D.3
  • 45
    • 84903511800 scopus 로고    scopus 로고
    • A geostatistical approach to upscale soil moisture with unequal precision observations
    • Wang J H, Ge Y, Song Y Z, et al. 2014. A geostatistical approach to upscale soil moisture with unequal precision observations. IEEE Geoscience and Remote Sensing Letters, 11(12): 2125–2129.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.12 , pp. 2125-2129
    • Wang, J.H.1    Ge, Y.2    Song, Y.Z.3
  • 46
    • 78751609728 scopus 로고    scopus 로고
    • Simulating multiple class urban land-use/cover changes by RBFN-based CA model
    • Wang Y, Li S C. 2011. Simulating multiple class urban land-use/cover changes by RBFN-based CA model. Computers & Geosciences, 37(2): 111–121.
    • (2011) Computers & Geosciences , vol.37 , Issue.2 , pp. 111-121
    • Wang, Y.1    Li, S.C.2
  • 47
    • 0032532857 scopus 로고    scopus 로고
    • How well do indicator variograms capture the spatial connectivity of soil moisture?
    • Western A W, Blöschl G, Grayson R B. 1998. How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrological Processes, 12(12): 1851–1868.
    • (1998) Hydrological Processes , vol.12 , Issue.12 , pp. 1851-1868
    • Western, A.W.1    Blöschl, G.2    Grayson, R.B.3
  • 48
    • 0035139311 scopus 로고    scopus 로고
    • Toward capturing hydrologically significant connectivity in spatial patterns
    • Western A W, Blöschl G, Grayson R B. 2001. Toward capturing hydrologically significant connectivity in spatial patterns. Water Resources Research, 37(1): 83–97.
    • (2001) Water Resources Research , vol.37 , Issue.1 , pp. 83-97
    • Western, A.W.1    Blöschl, G.2    Grayson, R.B.3
  • 49
    • 84859437926 scopus 로고    scopus 로고
    • Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China
    • Wu B F, Yan N N, Xiong J, et al. 2012. Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China. Journal of Hydrology, 436–437: 67–80.
    • (2012) Journal of Hydrology , vol.436-437 , pp. 67-80
    • Wu, B.F.1    Yan, N.N.2    Xiong, J.3
  • 50
    • 79955020375 scopus 로고    scopus 로고
    • Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network
    • Wu T, Kareem A. 2011. Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network. Journal of Wind Engineering and Industrial Aerodynamics, 99(4): 378–388.
    • (2011) Journal of Wind Engineering and Industrial Aerodynamics , vol.99 , Issue.4 , pp. 378-388
    • Wu, T.1    Kareem, A.2
  • 51
    • 19344364159 scopus 로고    scopus 로고
    • Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China
    • Zhao Y C, Shi X Z, Yu D S, et al. 2005. Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China. Chemosphere, 59(11): 1527–1535.
    • (2005) Chemosphere , vol.59 , Issue.11 , pp. 1527-1535
    • Zhao, Y.C.1    Shi, X.Z.2    Yu, D.S.3
  • 52
    • 84907429986 scopus 로고    scopus 로고
    • Observation on soil moisture of irrigation cropland by cosmic-ray probe
    • Zhu Z L, Tan L, Gao S G, et al. 2015. Observation on soil moisture of irrigation cropland by cosmic-ray probe. IEEE Geoscience and Remote Sensing Letters, 12(3): 472–476.
    • (2015) IEEE Geoscience and Remote Sensing Letters , vol.12 , Issue.3 , pp. 472-476
    • Zhu, Z.L.1    Tan, L.2    Gao, S.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.