-
1
-
-
0039129509
-
Environmental applications of semiconductor photocatalysis
-
[1] Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis. Chem. Rev. 95 (1995), 69–96.
-
(1995)
Chem. Rev.
, vol.95
, pp. 69-96
-
-
Hoffmann, M.R.1
Martin, S.T.2
Choi, W.3
Bahnemann, D.W.4
-
3
-
-
77249088846
-
2 single crystals with exposed 0 0 1 and 1 1 0 facets: facile synthesis and enhanced photocatalysis
-
2 single crystals with exposed 0 0 1 and 1 1 0 facets: facile synthesis and enhanced photocatalysis. Chem. Commun. 46 (2010), 1664–1666.
-
(2010)
Chem. Commun.
, vol.46
, pp. 1664-1666
-
-
Liu, M.1
Piao, L.2
Lu, W.3
Zhao, L.4
Ju, S.5
Yan, Z.6
He, T.7
Wang, W.8
-
4
-
-
34248662966
-
Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art
-
[4] Wang, S., Ang, H.M., Tade, M.O., Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ. Int. 33 (2007), 694–705.
-
(2007)
Environ. Int.
, vol.33
, pp. 694-705
-
-
Wang, S.1
Ang, H.M.2
Tade, M.O.3
-
5
-
-
84906761455
-
Moderate valence band of bismuth oxyhalides (BiOXs, X = Cl, Br, I) for the best photocatalytic degradation efficiency of MC-LR
-
[5] Wang, S.L., Wang, L.L., Ma, W.H., Johnson, D.M., Fang, Y.F., Jia, M.K., Huang, Y.P., Moderate valence band of bismuth oxyhalides (BiOXs, X = Cl, Br, I) for the best photocatalytic degradation efficiency of MC-LR. Chem. Eng. J. 259 (2015), 410–416.
-
(2015)
Chem. Eng. J.
, vol.259
, pp. 410-416
-
-
Wang, S.L.1
Wang, L.L.2
Ma, W.H.3
Johnson, D.M.4
Fang, Y.F.5
Jia, M.K.6
Huang, Y.P.7
-
7
-
-
77949302700
-
Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254 + 185 nm UV irradiation
-
[7] Quici, N., Vera, M.L., Choi, H., Puma, G.L., Dionysiou, D.D., Litter, M.I., Destaillats, H., Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254 + 185 nm UV irradiation. Appl. Catal. B 95 (2010), 312–319.
-
(2010)
Appl. Catal. B
, vol.95
, pp. 312-319
-
-
Quici, N.1
Vera, M.L.2
Choi, H.3
Puma, G.L.4
Dionysiou, D.D.5
Litter, M.I.6
Destaillats, H.7
-
9
-
-
84864545310
-
Artificial photosynthesis for solar water-splitting
-
[9] Tachibana, Y., Vayssieres, L., Durrant, J.R., Artificial photosynthesis for solar water-splitting. Nat. Photonics 6 (2012), 511–518.
-
(2012)
Nat. Photonics
, vol.6
, pp. 511-518
-
-
Tachibana, Y.1
Vayssieres, L.2
Durrant, J.R.3
-
10
-
-
0035854541
-
Visible-light photocatalysis in nitrogen-doped titanium oxides
-
[10] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293 (2001), 269–271.
-
(2001)
Science
, vol.293
, pp. 269-271
-
-
Asahi, R.1
Morikawa, T.2
Ohwaki, T.3
Aoki, K.4
Taga, Y.5
-
12
-
-
84901919389
-
3 particles by surface decoration with Ag nanoparticles
-
3 particles by surface decoration with Ag nanoparticles. J. Mater. Sci. – Mater. Electron. 25 (2014), 2463–2469.
-
(2014)
J. Mater. Sci. – Mater. Electron.
, vol.25
, pp. 2463-2469
-
-
Di, L.J.1
Yang, H.2
Hu, G.3
Xian, T.4
Ma, J.Y.5
Jiang, J.L.6
Li, R.S.7
Wei, Z.Q.8
-
14
-
-
84937012895
-
3 Nanocomposites (M = Ag, Au) bowl arrays with enhanced visible light photocatalytic activity
-
3 Nanocomposites (M = Ag, Au) bowl arrays with enhanced visible light photocatalytic activity. J. Am. Ceram. Soc. 98 (2015), 2255–2263.
-
(2015)
J. Am. Ceram. Soc.
, vol.98
, pp. 2255-2263
-
-
Zhang, X.1
Wang, B.2
Wang, X.3
Xiao, X.4
Dai, Z.5
Wu, W.6
Zheng, J.7
Ren, F.8
Jiang, C.9
Xie, R.J.10
-
15
-
-
84874004903
-
2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors
-
2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chem. Eng. J. 220 (2013), 302–310.
-
(2013)
Chem. Eng. J.
, vol.220
, pp. 302-310
-
-
Sathishkumar, P.1
Mangalaraja, R.V.2
Anandan, S.3
Ashokkumar, M.4
-
16
-
-
84899943870
-
Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity
-
[16] Marschall, R., Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 24 (2014), 2421–2440.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 2421-2440
-
-
Marschall, R.1
-
17
-
-
62549097299
-
2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism
-
2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. J. Appl. Phys., 105, 2009, 054310.
-
(2009)
J. Appl. Phys.
, vol.105
, pp. 054310
-
-
Li, S.1
Lin, Y.H.2
Zhang, B.P.3
Li, J.F.4
Nan, C.W.5
-
18
-
-
84905493740
-
2 hetero-junctions with enhanced visible-light photocatalytic activity
-
2 hetero-junctions with enhanced visible-light photocatalytic activity. RSC Adv., 4, 2014, 31941.
-
(2014)
RSC Adv.
, vol.4
, pp. 31941
-
-
Yang, Y.C.1
Liu, Y.2
Wei, J.H.3
Pan, C.X.4
Xiong, R.5
Shi, J.6
-
22
-
-
84873258918
-
3 composite as a catalyst
-
3 composite as a catalyst. Chem. Eng. J. 219 (2013), 225–237.
-
(2013)
Chem. Eng. J.
, vol.219
, pp. 225-237
-
-
An, J.J.1
Zhu, L.H.2
Wang, N.3
Song, Z.4
Yang, Z.5
Du, D.Y.6
Tang, H.Q.7
-
24
-
-
79951632470
-
3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties
-
3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties. Inorg. Chem. 50 (2011), 800–805.
-
(2011)
Inorg. Chem.
, vol.50
, pp. 800-805
-
-
Guan, M.L.1
Ma, D.K.2
Hu, S.W.3
Chen, Y.J.4
Huang, S.M.5
-
28
-
-
85027920129
-
A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm
-
[28] Pan, C., Takata, T., Nakabayashi, M., Matsumoto, T., Shibata, N., Ikuhara, Y., Domen, K., A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. 54 (2015), 2955–2959.
-
(2015)
Angew. Chem.
, vol.54
, pp. 2955-2959
-
-
Pan, C.1
Takata, T.2
Nakabayashi, M.3
Matsumoto, T.4
Shibata, N.5
Ikuhara, Y.6
Domen, K.7
-
29
-
-
84942208513
-
2 evolution
-
2 evolution. Angew. Chem. 54 (2015), 8498–8501.
-
(2015)
Angew. Chem.
, vol.54
, pp. 8498-8501
-
-
Chen, S.1
Qi, Y.2
Hisatomi, T.3
Ding, Q.4
Asai, T.5
Li, Z.6
Ma, S.S.7
Zhang, F.8
Domen, K.9
Li, C.10
-
31
-
-
79953254811
-
Tip-enhanced photovoltaic effects in bismuth ferrite
-
[31] Alexe, M., Hesse, D., Tip-enhanced photovoltaic effects in bismuth ferrite. Nat. Commun., 2, 2011, 256.
-
(2011)
Nat. Commun.
, vol.2
, pp. 256
-
-
Alexe, M.1
Hesse, D.2
-
33
-
-
35348937708
-
3 nanoparticles
-
3 nanoparticles. Adv. Mater. 19 (2007), 2889–2892.
-
(2007)
Adv. Mater.
, vol.19
, pp. 2889-2892
-
-
Gao, F.1
Chen, X.Y.2
Yin, K.B.3
Dong, S.4
Ren, Z.F.5
Yuan, F.6
Yu, T.7
Zou, Z.G.8
Liu, J.M.9
-
36
-
-
84903646593
-
3 nanoparticles for the visible-light induced photocatalytic property
-
3 nanoparticles for the visible-light induced photocatalytic property. Mater. Res. Bull. 59 (2014), 6–12.
-
(2014)
Mater. Res. Bull.
, vol.59
, pp. 6-12
-
-
Gao, T.1
Chen, Z.2
Zhu, Y.3
Niu, F.4
Huang, Q.5
Qin, L.6
Sun, X.7
Huang, Y.8
-
37
-
-
84939967951
-
3 with inverse opal structure
-
3 with inverse opal structure. J. Porous Mater. 22 (2015), 659–663.
-
(2015)
J. Porous Mater.
, vol.22
, pp. 659-663
-
-
Tan, T.Y.1
Xie, W.2
Zhu, G.J.3
Shan, J.4
Xu, P.F.5
Li, L.N.6
Wang, J.W.7
-
38
-
-
84925496954
-
3 microcrystals
-
3 microcrystals. J. Mater. Sci. – Mater. Electron. 26 (2015), 1525–1532.
-
(2015)
J. Mater. Sci. – Mater. Electron.
, vol.26
, pp. 1525-1532
-
-
Lv, Y.P.1
Xing, J.2
Zhao, C.C.3
Chen, D.M.4
Dong, J.J.5
Hao, H.Y.6
Wu, X.W.7
Zheng, Z.Y.8
-
39
-
-
77955316825
-
Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions
-
[39] Modeshia, D., Walton, R., Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39 (2010), 4303–4325.
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 4303-4325
-
-
Modeshia, D.1
Walton, R.2
-
41
-
-
0003459529
-
Handbook of X-ray Phototoelectron Spectroscopy
-
Perkin-Elmer Corp. Eden Prairie, MN 191
-
[41] Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., Chastain, J., Handbook of X-ray Phototoelectron Spectroscopy. 1992, Perkin-Elmer Corp., Eden Prairie, MN 191.
-
(1992)
-
-
Moulder, J.F.1
Stickle, W.F.2
Sobol, P.E.3
Bomben, K.D.4
Chastain, J.5
-
44
-
-
84899517573
-
3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis
-
3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale 6 (2014), 5402–5409.
-
(2014)
Nanoscale
, vol.6
, pp. 5402-5409
-
-
Qin, F.1
Zhao, H.2
Li, G.3
Yang, H.4
Li, J.5
Wang, R.6
Liu, Y.7
Hu, J.8
Sun, H.9
Chen, R.10
-
45
-
-
77951690869
-
One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances
-
[45] Cheng, H., Huang, B., Dai, Y., Qin, X., Zhang, X., One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26 (2010), 6618–6624.
-
(2010)
Langmuir
, vol.26
, pp. 6618-6624
-
-
Cheng, H.1
Huang, B.2
Dai, Y.3
Qin, X.4
Zhang, X.5
-
47
-
-
0030581043
-
Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene
-
[47] Fu, X., Clark, L.A., Zeltner, W.A., Anderson, M.A., Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. J. Photochem. Photobiol. A – Chem. 97 (1996), 181–186.
-
(1996)
J. Photochem. Photobiol. A – Chem.
, vol.97
, pp. 181-186
-
-
Fu, X.1
Clark, L.A.2
Zeltner, W.A.3
Anderson, M.A.4
|