메뉴 건너뛰기




Volumn 2, Issue 1, 2014, Pages 291-308

Neural network design and feature selection using principal component analysis and Taguchi method for identifying wood veneer defects

Author keywords

ANN; feature extraction; PCA; Taguchi analysis

Indexed keywords

DEFECTS; FEATURE EXTRACTION; NEURAL NETWORKS; QUALITY ASSURANCE; QUALITY CONTROL; TAGUCHI METHODS; VENEERS;

EID: 84977091046     PISSN: None     EISSN: 21693277     Source Type: Journal    
DOI: 10.1080/21693277.2014.892442     Document Type: Article
Times cited : (36)

References (27)
  • 1
    • 84881297898 scopus 로고    scopus 로고
    • Remaining useful life prediction of grinding mill liners using an artificial neural network
    • F.Ahmadzadeh,, & J.Lundberg, (2013). Remaining useful life prediction of grinding mill liners using an artificial neural network. Minerals Engineering, 53, 1–8.10.1016/j.mineng.2013.05.026
    • (2013) Minerals Engineering , vol.53 , pp. 1-8
    • Ahmadzadeh, F.1    Lundberg, J.2
  • 2
    • 67349281255 scopus 로고    scopus 로고
    • Evolutionary artificial neural network design and training for wood veneer classification
    • M.Castellani,, & H.Rowlands, (2009). Evolutionary artificial neural network design and training for wood veneer classification. Engineering Applications of Artificial Intelligence, 22, 732–741.10.1016/j.engappai.2009.01.013
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , pp. 732-741
    • Castellani, M.1    Rowlands, H.2
  • 3
    • 84977102753 scopus 로고    scopus 로고
    • Neural network design for short-term load forecasting, Proceedings of DRPT 2000, International Conference on IEEE, Electric Utility Deregulation and Restructuring and Power Technologies, London, UK:
    • W.Charytoniuk,, & M.S.Chen., (2000). Neural network design for short-term load forecasting. Proceedings of DRPT 2000, International Conference on IEEE, Electric Utility Deregulation and Restructuring and Power Technologies, London, UK.
    • (2000)
    • Charytoniuk, W.1    Chen, M.S.2
  • 4
    • 84886799092 scopus 로고    scopus 로고
    • Image data processing via neural networks for tool wear prediction
    • D.M.D’Addona,, & R.Teti, (2013). Image data processing via neural networks for tool wear prediction. Procedia CIRP, 12, 252–267.10.1016/j.procir.2013.09.044
    • (2013) Procedia CIRP , vol.12 , pp. 252-267
    • D’Addona, D.M.1    Teti, R.2
  • 6
    • 0012556439 scopus 로고
    • (Report 3.1.2, QUAINT, BRITE/EURAM project 5560), Cardiff: Intelligent Systems Laboratory, School of Engineering, University of Wales
    • T.Lappalainen,, R.J.Alcock,, & M.A.Wani, (1994). Plywood feature definition and extraction (Report 3.1.2, QUAINT, BRITE/EURAM project 5560). Cardiff: Intelligent Systems Laboratory, School of Engineering, University of Wales.
    • (1994) Plywood feature definition and extraction
    • Lappalainen, T.1    Alcock, R.J.2    Wani, M.A.3
  • 7
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in nervous activity
    • W.McCulloch,, & W.Pitts, (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133. doi:10.1007/BF0247825910.1007/BF02478259
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 13
    • 0034313880 scopus 로고    scopus 로고
    • Optimizing the parameters of multilayered feedforward neural networks through Taguchi design of experiments
    • M.S.Packianather,, P.R.Drake,, & H.Rowlands, (2000). Optimizing the parameters of multilayered feedforward neural networks through Taguchi design of experiments. Quality and Reliability Engineering International, 16, 461–473.10.1002/(ISSN)1099-1638
    • (2000) Quality and Reliability Engineering International , vol.16 , pp. 461-473
    • Packianather, M.S.1    Drake, P.R.2    Rowlands, H.3
  • 14
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space (PDF)
    • K.Pearson, (1901). On lines and planes of closest fit to systems of points in space (PDF). Philosophical Magazine, 2, 559–572.10.1080/14786440109462720
    • (1901) Philosophical Magazine , vol.2 , pp. 559-572
    • Pearson, K.1
  • 20
    • 38949172022 scopus 로고    scopus 로고
    • Optimising neural networks for identification of wood defects using the Bees Algorithm, Proceedings of the IEEE 2006 International Conference on Industrial Informatics, Singapore:
    • D.T.Pham,, A.Ghanbarzadeh,, E.Koc,, S.Otri,, & M.Packianather, (2006). Optimising neural networks for identification of wood defects using the Bees Algorithm. Proceedings of the IEEE 2006 International Conference on Industrial Informatics, Singapore.
    • (2006)
    • Pham, D.T.1    Ghanbarzadeh, A.2    Koc, E.3    Otri, S.4    Packianather, M.5
  • 23
    • 0026868968 scopus 로고
    • Real-time surface grading of profiled wooden boards
    • W.Pölzleitner,, & G.Schwingshakl, (1992). Real-time surface grading of profiled wooden boards. Industrial Metrology, 2, 283–298.10.1016/0921-5956(92)80008-H
    • (1992) Industrial Metrology , vol.2 , pp. 283-298
    • Pölzleitner, W.1    Schwingshakl, G.2
  • 24
    • 77955306523 scopus 로고    scopus 로고
    • A neural net implementation of SPCA pre-processor for gas/odor classification using the responses of thick film gas sensor array
    • N.S.Rajput,, R.R.Das,, V.N.Mishra,, K.P.Singh,, & R.Dwivedi, (2010). A neural net implementation of SPCA pre-processor for gas/odor classification using the responses of thick film gas sensor array. Sensors and Actuators B: Chemical, 148, 550–558.10.1016/j.snb.2010.05.051
    • (2010) Sensors and Actuators B: Chemical , vol.148 , pp. 550-558
    • Rajput, N.S.1    Das, R.R.2    Mishra, V.N.3    Singh, K.P.4    Dwivedi, R.5
  • 26
    • 84977091599 scopus 로고    scopus 로고
    • Principal component analysis coupled with artificial neural networks for therapeutic indication prediction of thai herbal formulae
    • L.Sratthaphut,, S.Jamrus,, S.Woothianusorn,, & O.Toyama, (2013). Principal component analysis coupled with artificial neural networks for therapeutic indication prediction of thai herbal formulae. Silpakorn University Science and Technology Journal, 7, 41–48.
    • (2013) Silpakorn University Science and Technology Journal , vol.7 , pp. 41-48
    • Sratthaphut, L.1    Jamrus, S.2    Woothianusorn, S.3    Toyama, O.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.