-
1
-
-
0000017202
-
-
Stork, G.; Terrell, R.; Szmuszkovicz, J. J. Am. Chem. Soc. 1954, 76, 2029-2030 10.1021/ja01636a103
-
(1954)
J. Am. Chem. Soc.
, vol.76
, pp. 2029-2030
-
-
Stork, G.1
Terrell, R.2
Szmuszkovicz, J.3
-
2
-
-
33947482604
-
-
Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R. J. Am. Chem. Soc. 1963, 85, 207-222 10.1021/ja00885a021
-
(1963)
J. Am. Chem. Soc.
, vol.85
, pp. 207-222
-
-
Stork, G.1
Brizzolara, A.2
Landesman, H.3
Szmuszkovicz, J.4
Terrell, R.5
-
3
-
-
84981886574
-
-
Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1971, 10, 496-497 10.1002/anie.197104961
-
(1971)
Angew. Chem., Int. Ed. Engl.
, vol.10
, pp. 496-497
-
-
Eder, U.1
Sauer, G.2
Wiechert, R.3
-
5
-
-
0034654216
-
-
List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395-2396 10.1021/ja994280y
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 2395-2396
-
-
List, B.1
Lerner, R.A.2
Barbas, C.F.3
-
6
-
-
0034600250
-
-
Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243-4244 10.1021/ja000092s
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 4243-4244
-
-
Ahrendt, K.A.1
Borths, C.J.2
MacMillan, D.W.C.3
-
9
-
-
34247565955
-
-
Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582-585 10.1126/science.1142696
-
(2007)
Science
, vol.316
, pp. 582-585
-
-
Beeson, T.D.1
Mastracchio, A.2
Hong, J.-B.3
Ashton, K.4
MacMillan, D.W.C.5
-
10
-
-
34250205588
-
-
Jang, H.-Y.; Hong, J.-B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004-7005 10.1021/ja0719428
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 7004-7005
-
-
Jang, H.-Y.1
Hong, J.-B.2
MacMillan, D.W.C.3
-
11
-
-
77956039300
-
-
Devery, J. J., III; Conrad, J. C.; MacMillan, D. W. C.; Flowers, R. A., II Angew. Chem., Int. Ed. 2010, 49, 6106-6110 10.1002/anie.201001673
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 6106-6110
-
-
Devery, J.J.1
Conrad, J.C.2
MacMillan, D.W.C.3
Flowers, R.A.4
-
12
-
-
38349100690
-
-
Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471-5569 10.1021/cr0684016
-
(2007)
Chem. Rev.
, vol.107
, pp. 5471-5569
-
-
Mukherjee, S.1
Yang, J.W.2
Hoffmann, S.3
List, B.4
-
13
-
-
84883189645
-
-
Arceo, E.; Jurberg, I. D.; álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750-756 10.1038/nchem.1727
-
(2013)
Nat. Chem.
, vol.5
, pp. 750-756
-
-
Arceo, E.1
Jurberg, I.D.2
Álvarez-Fernández, A.3
Melchiorre, P.4
-
14
-
-
84900332598
-
-
Arceo, E.; Bahamonde, A.; Bergonzini, G.; Melchiorre, P. Chem. Sci. 2014, 5, 2438-2442 10.1039/c4sc00315b
-
(2014)
Chem. Sci.
, vol.5
, pp. 2438-2442
-
-
Arceo, E.1
Bahamonde, A.2
Bergonzini, G.3
Melchiorre, P.4
-
15
-
-
84930225184
-
-
Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 6120-6123 10.1021/jacs.5b01662
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 6120-6123
-
-
Silvi, M.1
Arceo, E.2
Jurberg, I.D.3
Cassani, C.4
Melchiorre, P.5
-
17
-
-
77957304088
-
-
Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600-13603 10.1021/ja106593m
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 13600-13603
-
-
Shih, H.-W.1
Vander Wal, M.N.2
Grange, R.L.3
MacMillan, D.W.C.4
-
18
-
-
0000464139
-
-
Foster, R. J. Phys. Chem. 1980, 84, 2135-2141 10.1021/j100454a006
-
(1980)
J. Phys. Chem.
, vol.84
, pp. 2135-2141
-
-
Foster, R.1
-
24
-
-
84928975177
-
-
For the use of chiral enolates, generated under phase-transfer conditions, to form chiral photoactive EDA complexes while promoting an enantioselective process, see
-
For the use of chiral enolates, generated under phase-transfer conditions, to form chiral photoactive EDA complexes while promoting an enantioselective process, see: Woźniak, Ł.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678-5681 10.1021/jacs.5b03243
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 5678-5681
-
-
Woźniak, Ł.1
Murphy, J.J.2
Melchiorre, P.3
-
25
-
-
85027924723
-
-
Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. Angew. Chem., Int. Ed. 2015, 54, 3872-3890 10.1002/anie.201411409
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 3872-3890
-
-
Brimioulle, R.1
Lenhart, D.2
Maturi, M.M.3
Bach, T.4
-
26
-
-
84922804992
-
-
Meggers, E. Chem. Commun. 2015, 51, 3290-3301 10.1039/C4CC09268F
-
(2015)
Chem. Commun.
, vol.51
, pp. 3290-3301
-
-
Meggers, E.1
-
27
-
-
24144502430
-
-
Bauer, A.; Westkamper, F.; Grimme, S.; Bach, T. Nature 2005, 436, 1139-1140 10.1038/nature03955
-
(2005)
Nature
, vol.436
, pp. 1139-1140
-
-
Bauer, A.1
Westkamper, F.2
Grimme, S.3
Bach, T.4
-
29
-
-
84899024092
-
-
Alonso, R.; Bach, T. Angew. Chem., Int. Ed. 2014, 53, 4368-4371 10.1002/anie.201310997
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 4368-4371
-
-
Alonso, R.1
Bach, T.2
-
30
-
-
84899543979
-
-
Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392-396 10.1126/science.1251511
-
(2014)
Science
, vol.344
, pp. 392-396
-
-
Du, J.1
Skubi, K.L.2
Schultz, D.M.3
Yoon, T.P.4
-
31
-
-
84922773549
-
-
Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.; Chen, L.-A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Nature 2014, 515, 100-103 10.1038/nature13892
-
(2014)
Nature
, vol.515
, pp. 100-103
-
-
Huo, H.1
Shen, X.2
Wang, C.3
Zhang, L.4
Röse, P.5
Chen, L.-A.6
Harms, K.7
Marsch, M.8
Hilt, G.9
Meggers, E.10
-
32
-
-
84957899492
-
-
Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681-684 10.1126/science.aad8313
-
(2016)
Science
, vol.351
, pp. 681-684
-
-
Kainz, Q.M.1
Matier, C.D.2
Bartoszewicz, A.3
Zultanski, S.L.4
Peters, J.C.5
Fu, G.C.6
-
33
-
-
84947957702
-
-
For a recent review, see
-
For a recent review, see: Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 13860-13874 10.1002/anie.201503920
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 13860-13874
-
-
Donslund, B.S.1
Johansen, T.K.2
Poulsen, P.H.3
Halskov, K.S.4
Jørgensen, K.A.5
-
34
-
-
84985052460
-
-
Enamines have a low ionization potential. For example, 1-but-1-enylpyrrolidine has an IP of 7.2 eV; see
-
Enamines have a low ionization potential. For example, 1-but-1-enylpyrrolidine has an IP of 7.2 eV; see: Müller, K.; Previdoli, F.; Desilvestro, H. Helv. Chim. Acta 1981, 64, 2497-2507 10.1002/hlca.19810640802
-
(1981)
Helv. Chim. Acta
, vol.64
, pp. 2497-2507
-
-
Müller, K.1
Previdoli, F.2
Desilvestro, H.3
-
35
-
-
0001511660
-
-
Job, P. Ann. Chem. 1928, 9, 113-203
-
(1928)
Ann. Chem.
, vol.9
, pp. 113-203
-
-
Job, P.1
-
37
-
-
33646241753
-
-
Costentin, C.; Robert, M.; Savéant, J.-M. Chem. Phys. 2006, 324, 40-56 10.1016/j.chemphys.2005.09.029
-
(2006)
Chem. Phys.
, vol.324
, pp. 40-56
-
-
Costentin, C.1
Robert, M.2
Savéant, J.-M.3
-
38
-
-
0000008283
-
-
Although the photophysics of EDA complexes have been extensively studied (refs 8a and 8b), their use in chemical synthesis has found limited applications. This is mainly because the unproductive, back electron transfer (BET), which restores the ground-state EDA complex, is generally faster than other possible processes leading to products. For a pertinent discussion, see
-
Although the photophysics of EDA complexes have been extensively studied (refs 8a and 8b), their use in chemical synthesis has found limited applications. This is mainly because the unproductive, back electron transfer (BET), which restores the ground-state EDA complex, is generally faster than other possible processes leading to products. For a pertinent discussion, see: Rathore, R.; Kochi, J. K. Adv. Phys. Org. Chem. 2000, 35, 193-318 10.1016/S0065-3160(00)35014-6
-
(2000)
Adv. Phys. Org. Chem.
, vol.35
, pp. 193-318
-
-
Rathore, R.1
Kochi, J.K.2
-
39
-
-
84873280664
-
-
For an additional example of an enamine, formed upon condensation of an aliphatic aldehyde and a secondary amine, which weakly absorbs in the visible region, see
-
For an additional example of an enamine, formed upon condensation of an aliphatic aldehyde and a secondary amine, which weakly absorbs in the visible region, see: González-Béjar, M.; Peters, K.; Hallett-Tapley, G. L.; Grenier, M.; Scaiano, J. C. Chem. Commun. 2013, 49, 1732-1734 10.1039/c3cc38287g
-
(2013)
Chem. Commun.
, vol.49
, pp. 1732-1734
-
-
González-Béjar, M.1
Peters, K.2
Hallett-Tapley, G.L.3
Grenier, M.4
Scaiano, J.C.5
-
40
-
-
0001604206
-
-
Rico, I.; Cantacuzene, D.; Wakselman, C. Tetrahedron Lett. 1981, 22, 3405-3408 10.1016/S0040-4039(01)81917-1
-
(1981)
Tetrahedron Lett.
, vol.22
, pp. 3405-3408
-
-
Rico, I.1
Cantacuzene, D.2
Wakselman, C.3
-
41
-
-
4243056627
-
-
Iwasaki, T.; Sawada, T.; Okuyama, M.; Kamada, H. J. Phys. Chem. 1978, 82, 371-372 10.1021/j100492a025
-
(1978)
J. Phys. Chem.
, vol.82
, pp. 371-372
-
-
Iwasaki, T.1
Sawada, T.2
Okuyama, M.3
Kamada, H.4
-
42
-
-
84873460582
-
-
Barata-Vallejo, S.; Flesia, M. M.; Lantaño, B.; Argüello, J. E.; Peñéñory, A. B.; Postigo, A. Eur. J. Org. Chem. 2013, 2013, 998-1008 10.1002/ejoc.201201271
-
(2013)
Eur. J. Org. Chem.
, vol.2013
, pp. 998-1008
-
-
Barata-Vallejo, S.1
Flesia, M.M.2
Lantaño, B.3
Argüello, J.E.4
Peñéñory, A.B.5
Postigo, A.6
-
43
-
-
84928911560
-
-
Franz, J. F.; Kraus, W. B.; Zeitler, K. Chem. Commun. 2015, 51, 8280-8283 10.1039/C4CC10270C
-
(2015)
Chem. Commun.
, vol.51
, pp. 8280-8283
-
-
Franz, J.F.1
Kraus, W.B.2
Zeitler, K.3
-
44
-
-
1842447549
-
Energy transfer and electron transfer
-
An electronically excited state possesses a much lower ionization potential (i.e. it is a better reductant) than the ground state; see: University Science Books: Sausalito, CA, Chapter 7, p. Since an excited state has an inherent propensity to form a supramolecular complex, the generation of an exciplex between the excited enamine I∗ and bromomalonate 2c cannot be excluded; however, we could not observe any emission diagnostic of possible excited-state aggregations.
-
An electronically excited state possesses a much lower ionization potential (i.e., it is a better reductant) than the ground state; see: Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Energy transfer and electron transfer. Modern Molecular Photochemistry of Organic Molecules; University Science Books: Sausalito, CA, 2010; Chapter 7, p 383. Since an excited state has an inherent propensity to form a supramolecular complex, the generation of an exciplex between the excited enamine I∗ and bromomalonate 2c cannot be excluded; however, we could not observe any emission diagnostic of possible excited-state aggregations.
-
(2010)
Modern Molecular Photochemistry of Organic Molecules
, pp. 383
-
-
Turro, N.J.1
Ramamurthy, V.2
Scaiano, J.C.3
-
45
-
-
84955172566
-
-
Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58-102 10.1002/anie.201505090
-
(2016)
Angew. Chem., Int. Ed.
, vol.55
, pp. 58-102
-
-
Studer, A.1
Curran, D.P.2
-
46
-
-
84942945430
-
-
Kärkäs, M. D.; Matsuura, B. S.; Stephenson, C. R. J. Science 2015, 349, 1285-1286 10.1126/science.aad0193
-
(2015)
Science
, vol.349
, pp. 1285-1286
-
-
Kärkäs, M.D.1
Matsuura, B.S.2
Stephenson, C.R.J.3
-
47
-
-
84874993810
-
-
Ismaili, H.; Pitre, S. P.; Scaiano, J. C. Catal. Sci. Technol. 2013, 3, 935-937 10.1039/c3cy20759e
-
(2013)
Catal. Sci. Technol.
, vol.3
, pp. 935-937
-
-
Ismaili, H.1
Pitre, S.P.2
Scaiano, J.C.3
-
48
-
-
0001194619
-
-
Wayner, D. D. M.; Dannenberg, J. J.; Griller, D. Chem. Phys. Lett. 1986, 131, 189-191 10.1016/0009-2614(86)80542-5
-
(1986)
Chem. Phys. Lett.
, vol.131
, pp. 189-191
-
-
Wayner, D.D.M.1
Dannenberg, J.J.2
Griller, D.3
-
50
-
-
84941652119
-
-
Yoon recently reported that a related enamine-mediated alkylation of octanal with bromomalonate 2c using a polypyridylruthenium(II) complex as an external photoredox catalyst possesses a similar quantum yield (Φ = 18), further indicating a radical chain mechanism; see
-
Yoon recently reported that a related enamine-mediated alkylation of octanal with bromomalonate 2c using a polypyridylruthenium(II) complex as an external photoredox catalyst possesses a similar quantum yield (Φ = 18), further indicating a radical chain mechanism; see: Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426-5434 10.1039/C5SC02185E
-
(2015)
Chem. Sci.
, vol.6
, pp. 5426-5434
-
-
Cismesia, M.A.1
Yoon, T.P.2
-
53
-
-
0000140457
-
-
Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science 1945, 102, 128 10.1126/science.102.2640.128
-
(1945)
Science
, vol.102
, pp. 128
-
-
Kharasch, M.S.1
Jensen, E.V.2
Urry, W.H.3
-
54
-
-
84862516895
-
-
Wiley: Hoboken, NJ, 2012; Vol.
-
Pintauer, T.; Matyjaszewski, K. Encyclopedia of Radicals; Wiley: Hoboken, NJ, 2012; Vol. 4, p 1851.
-
Encyclopedia of Radicals
, vol.4
, pp. 1851
-
-
Pintauer, T.1
Matyjaszewski, K.2
-
56
-
-
0037239899
-
-
Rossi, R. A.; Pierini, A. B.; Peñéñory, A. B. Chem. Rev. 2003, 103, 71-168 10.1021/cr960134o
-
(2003)
Chem. Rev.
, vol.103
, pp. 71-168
-
-
Rossi, R.A.1
Pierini, A.B.2
Peñéñory, A.B.3
-
58
-
-
84885595460
-
-
Feldmeier, C.; Bartling, H.; Riedle, E.; Gschwind, R. M. J. Magn. Reson. 2013, 232, 39-44 10.1016/j.jmr.2013.04.011
-
(2013)
J. Magn. Reson.
, vol.232
, pp. 39-44
-
-
Feldmeier, C.1
Bartling, H.2
Riedle, E.3
Gschwind, R.M.4
-
59
-
-
84921063849
-
-
Feldmeier, C.; Bartling, H.; Magerl, K.; Gschwind, R. M. Angew. Chem., Int. Ed. 2015, 54, 1347-1351 10.1002/anie.201409146
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 1347-1351
-
-
Feldmeier, C.1
Bartling, H.2
Magerl, K.3
Gschwind, R.M.4
-
60
-
-
22744443220
-
-
We could not use the method of reaction progress kinetic analysis to provide a rapid and comprehensive kinetic profile of the reactions because of the significant catalyst degradation pathway. For an overview highlighting the potential of this approach, see
-
We could not use the method of reaction progress kinetic analysis to provide a rapid and comprehensive kinetic profile of the reactions because of the significant catalyst degradation pathway. For an overview highlighting the potential of this approach, see: Blackmond, D. G. Angew. Chem., Int. Ed. 2005, 44, 4302-4320 10.1002/anie.200462544
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 4302-4320
-
-
Blackmond, D.G.1
-
61
-
-
70350678840
-
-
For a similar treatment of kinetic data for a reaction proceeding through a radical chain mechanism, see
-
For a similar treatment of kinetic data for a reaction proceeding through a radical chain mechanism, see: Boisvert, L.; Denney, M. C.; Hanson, S. K.; Goldberg, K. I. J. Am. Chem. Soc. 2009, 131, 15802-15814 10.1021/ja9061932
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 15802-15814
-
-
Boisvert, L.1
Denney, M.C.2
Hanson, S.K.3
Goldberg, K.I.4
|