메뉴 건너뛰기




Volumn 138, Issue 25, 2016, Pages 8019-8030

Mechanism of the stereoselective α-alkylation of aldehydes driven by the photochemical activity of enamines

Author keywords

[No Author keywords available]

Indexed keywords

ALDEHYDES; ALKYLATION; CHAINS; CHARGE TRANSFER; ELECTROMAGNETIC WAVE ABSORPTION; ENANTIOSELECTIVITY; EXCITED STATES; GROUND STATE; KINETIC THEORY; LIGHT ABSORPTION; MAGNETIC RESONANCE SPECTROSCOPY; MECHANISMS; NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY; STEREOCHEMISTRY;

EID: 84976622090     PISSN: 00027863     EISSN: 15205126     Source Type: Journal    
DOI: 10.1021/jacs.6b04871     Document Type: Article
Times cited : (199)

References (61)
  • 18
    • 0000464139 scopus 로고
    • Foster, R. J. Phys. Chem. 1980, 84, 2135-2141 10.1021/j100454a006
    • (1980) J. Phys. Chem. , vol.84 , pp. 2135-2141
    • Foster, R.1
  • 24
    • 84928975177 scopus 로고    scopus 로고
    • For the use of chiral enolates, generated under phase-transfer conditions, to form chiral photoactive EDA complexes while promoting an enantioselective process, see
    • For the use of chiral enolates, generated under phase-transfer conditions, to form chiral photoactive EDA complexes while promoting an enantioselective process, see: Woźniak, Ł.; Murphy, J. J.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 5678-5681 10.1021/jacs.5b03243
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 5678-5681
    • Woźniak, Ł.1    Murphy, J.J.2    Melchiorre, P.3
  • 26
    • 84922804992 scopus 로고    scopus 로고
    • Meggers, E. Chem. Commun. 2015, 51, 3290-3301 10.1039/C4CC09268F
    • (2015) Chem. Commun. , vol.51 , pp. 3290-3301
    • Meggers, E.1
  • 28
    • 84887758589 scopus 로고    scopus 로고
    • Brimioulle, R.; Bach, T. Science 2013, 342, 840-843 10.1126/science.1244809
    • (2013) Science , vol.342 , pp. 840-843
    • Brimioulle, R.1    Bach, T.2
  • 34
    • 84985052460 scopus 로고
    • Enamines have a low ionization potential. For example, 1-but-1-enylpyrrolidine has an IP of 7.2 eV; see
    • Enamines have a low ionization potential. For example, 1-but-1-enylpyrrolidine has an IP of 7.2 eV; see: Müller, K.; Previdoli, F.; Desilvestro, H. Helv. Chim. Acta 1981, 64, 2497-2507 10.1002/hlca.19810640802
    • (1981) Helv. Chim. Acta , vol.64 , pp. 2497-2507
    • Müller, K.1    Previdoli, F.2    Desilvestro, H.3
  • 35
    • 0001511660 scopus 로고
    • Job, P. Ann. Chem. 1928, 9, 113-203
    • (1928) Ann. Chem. , vol.9 , pp. 113-203
    • Job, P.1
  • 38
    • 0000008283 scopus 로고    scopus 로고
    • Although the photophysics of EDA complexes have been extensively studied (refs 8a and 8b), their use in chemical synthesis has found limited applications. This is mainly because the unproductive, back electron transfer (BET), which restores the ground-state EDA complex, is generally faster than other possible processes leading to products. For a pertinent discussion, see
    • Although the photophysics of EDA complexes have been extensively studied (refs 8a and 8b), their use in chemical synthesis has found limited applications. This is mainly because the unproductive, back electron transfer (BET), which restores the ground-state EDA complex, is generally faster than other possible processes leading to products. For a pertinent discussion, see: Rathore, R.; Kochi, J. K. Adv. Phys. Org. Chem. 2000, 35, 193-318 10.1016/S0065-3160(00)35014-6
    • (2000) Adv. Phys. Org. Chem. , vol.35 , pp. 193-318
    • Rathore, R.1    Kochi, J.K.2
  • 39
    • 84873280664 scopus 로고    scopus 로고
    • For an additional example of an enamine, formed upon condensation of an aliphatic aldehyde and a secondary amine, which weakly absorbs in the visible region, see
    • For an additional example of an enamine, formed upon condensation of an aliphatic aldehyde and a secondary amine, which weakly absorbs in the visible region, see: González-Béjar, M.; Peters, K.; Hallett-Tapley, G. L.; Grenier, M.; Scaiano, J. C. Chem. Commun. 2013, 49, 1732-1734 10.1039/c3cc38287g
    • (2013) Chem. Commun. , vol.49 , pp. 1732-1734
    • González-Béjar, M.1    Peters, K.2    Hallett-Tapley, G.L.3    Grenier, M.4    Scaiano, J.C.5
  • 44
    • 1842447549 scopus 로고    scopus 로고
    • Energy transfer and electron transfer
    • An electronically excited state possesses a much lower ionization potential (i.e. it is a better reductant) than the ground state; see: University Science Books: Sausalito, CA, Chapter 7, p. Since an excited state has an inherent propensity to form a supramolecular complex, the generation of an exciplex between the excited enamine I∗ and bromomalonate 2c cannot be excluded; however, we could not observe any emission diagnostic of possible excited-state aggregations.
    • An electronically excited state possesses a much lower ionization potential (i.e., it is a better reductant) than the ground state; see: Turro, N. J.; Ramamurthy, V.; Scaiano, J. C. Energy transfer and electron transfer. Modern Molecular Photochemistry of Organic Molecules; University Science Books: Sausalito, CA, 2010; Chapter 7, p 383. Since an excited state has an inherent propensity to form a supramolecular complex, the generation of an exciplex between the excited enamine I∗ and bromomalonate 2c cannot be excluded; however, we could not observe any emission diagnostic of possible excited-state aggregations.
    • (2010) Modern Molecular Photochemistry of Organic Molecules , pp. 383
    • Turro, N.J.1    Ramamurthy, V.2    Scaiano, J.C.3
  • 50
    • 84941652119 scopus 로고    scopus 로고
    • Yoon recently reported that a related enamine-mediated alkylation of octanal with bromomalonate 2c using a polypyridylruthenium(II) complex as an external photoredox catalyst possesses a similar quantum yield (Φ = 18), further indicating a radical chain mechanism; see
    • Yoon recently reported that a related enamine-mediated alkylation of octanal with bromomalonate 2c using a polypyridylruthenium(II) complex as an external photoredox catalyst possesses a similar quantum yield (Φ = 18), further indicating a radical chain mechanism; see: Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426-5434 10.1039/C5SC02185E
    • (2015) Chem. Sci. , vol.6 , pp. 5426-5434
    • Cismesia, M.A.1    Yoon, T.P.2
  • 60
    • 22744443220 scopus 로고    scopus 로고
    • We could not use the method of reaction progress kinetic analysis to provide a rapid and comprehensive kinetic profile of the reactions because of the significant catalyst degradation pathway. For an overview highlighting the potential of this approach, see
    • We could not use the method of reaction progress kinetic analysis to provide a rapid and comprehensive kinetic profile of the reactions because of the significant catalyst degradation pathway. For an overview highlighting the potential of this approach, see: Blackmond, D. G. Angew. Chem., Int. Ed. 2005, 44, 4302-4320 10.1002/anie.200462544
    • (2005) Angew. Chem., Int. Ed. , vol.44 , pp. 4302-4320
    • Blackmond, D.G.1
  • 61
    • 70350678840 scopus 로고    scopus 로고
    • For a similar treatment of kinetic data for a reaction proceeding through a radical chain mechanism, see
    • For a similar treatment of kinetic data for a reaction proceeding through a radical chain mechanism, see: Boisvert, L.; Denney, M. C.; Hanson, S. K.; Goldberg, K. I. J. Am. Chem. Soc. 2009, 131, 15802-15814 10.1021/ja9061932
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 15802-15814
    • Boisvert, L.1    Denney, M.C.2    Hanson, S.K.3    Goldberg, K.I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.