메뉴 건너뛰기




Volumn 25, Issue , 2009, Pages 433-454

Clustering and classification algorithms in food and agricultural applications: A survey

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84976493809     PISSN: 19316828     EISSN: 19316836     Source Type: Book Series    
DOI: 10.1007/978-0-387-75181-8_21     Document Type: Chapter
Times cited : (14)

References (96)
  • 1
    • 33646089647 scopus 로고    scopus 로고
    • Discrimination and classification of fresh-cut starfruits (Averrhoa carambola L.) using automated machine vision system
    • Abdullah, M.Z., Mohamad-Saleh, J., Fathinul-Syahir, A.S., Mohd-Azemi, B.M.N., 2006. Discrimination and classification of fresh-cut starfruits (Averrhoa carambola L.) using automated machine vision system. J. Food Eng. 76, 506-523.
    • (2006) J. Food Eng. , vol.76 , pp. 506-523
    • Abdullah, M.Z.1    Mohamad-Saleh, J.2    Fathinul-Syahir, A.S.3    Mohd-Azemi, B.M.N.4
  • 2
    • 0032915365 scopus 로고    scopus 로고
    • Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers
    • Anderson, K.A., Magnuson, B.A., Tschirgi, M.L., Smith, B., 1999. Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers. J. Agric. Food Chem. 47(4), 1568-1575.
    • (1999) J. Agric. Food Chem. , vol.47 , Issue.4 , pp. 1568-1575
    • Anderson, K.A.1    Magnuson, B.A.2    Tschirgi, M.L.3    Smith, B.4
  • 5
    • 0033280561 scopus 로고    scopus 로고
    • Asurvey of fuzzy clustering algorithms for pattern recognition-Part I
    • Baraldi, A., Blonda, P., 1999. Asurvey of fuzzy clustering algorithms for pattern recognition-Part I. IEEE Trans. Sys. Man Cyber. -Part B, Cybernetics 29(6), 778-785.
    • (1999) IEEE Trans. Sys. Man Cyber. -Part B, Cybernetics , vol.29 , Issue.6 , pp. 778-785
    • Baraldi, A.1    Blonda, P.2
  • 6
    • 0033281101 scopus 로고    scopus 로고
    • Asurvey of fuzzy clustering algorithms for pattern recognition-Part II
    • Baraldi, A., Blonda, P., 1999. Asurvey of fuzzy clustering algorithms for pattern recognition-Part II. IEEE Trans. Sys. Man Cyber. -Part B, Cybernetics 29(6), 786-801.
    • (1999) IEEE Trans. Sys. Man Cyber. -Part B, Cybernetics , vol.29 , Issue.6 , pp. 786-801
    • Baraldi, A.1    Blonda, P.2
  • 8
    • 34548453049 scopus 로고    scopus 로고
    • Categorical data fuzzy clustering: An analysis of local search heuristics
    • Benati, S., 2006. Categorical data fuzzy clustering: an analysis of local search heuristics. Comput. Oper. Res. 35(3), 766-775.
    • (2006) Comput. Oper. Res. , vol.35 , Issue.3 , pp. 766-775
    • Benati, S.1
  • 9
    • 0034559505 scopus 로고    scopus 로고
    • Adaptive soft k-nearest-neighbour classifiers
    • Bermejo, S., Cabestany, J., 2000. Adaptive soft k-nearest-neighbour classifiers. Pattern Recognit. 33, 1999-2005.
    • (2000) Pattern Recognit. , vol.33 , pp. 1999-2005
    • Bermejo, S.1    Cabestany, J.2
  • 12
    • 33644685387 scopus 로고    scopus 로고
    • Mining market data: A network approach
    • Boginski, V., Butenko, S., Pardalos, P.M., 2006. Mining market data: A network approach. Comput. Oper. Res. 33(11), 3171-3184.
    • (2006) Comput. Oper. Res. , vol.33 , Issue.11 , pp. 3171-3184
    • Boginski, V.1    Butenko, S.2    Pardalos, P.M.3
  • 14
    • 23944510728 scopus 로고    scopus 로고
    • Feature selection for consistent biclustering via fractional 0.1 programming
    • Busygin, S., Prokopyev, O.A., Pardalos, P.M., 2005. Feature selection for consistent biclustering via fractional 0.1 programming. Comb. Optim. 10, 7-21.
    • (2005) Comb. Optim. , vol.10 , pp. 7-21
    • Busygin, S.1    Prokopyev, O.A.2    Pardalos, P.M.3
  • 15
    • 2442619351 scopus 로고    scopus 로고
    • Classification of German white wines with certified brand of origin by multielement quantitation and pattern recognition techniques
    • Castińeira Gómez, M.D.M., Fledmann, I., Jakubowski, N., Andersson, J.T., 2004. Classification of German white wines with certified brand of origin by multielement quantitation and pattern recognition techniques. J. Agric. Food Chem. 52, 2962-2974.
    • (2004) J. Agric. Food Chem. , vol.52 , pp. 2962-2974
    • Castińeira Gómez, M.D.M.1    Fledmann, I.2    Jakubowski, N.3    Andersson, J.T.4
  • 17
    • 33750283635 scopus 로고    scopus 로고
    • Faster and more robust point symmetry-based k-means algorithm
    • Chung, K.L., Lin, J.S., 2007. Faster and more robust point symmetry-based k-means algorithm. Pattern. Recognit. 40(2), 410-422.
    • (2007) Pattern. Recognit. , vol.40 , Issue.2 , pp. 410-422
    • Chung, K.L.1    Lin, J.S.2
  • 18
    • 22544487549 scopus 로고    scopus 로고
    • Artificial neural networks as an alternative tool in pine bark volume estimation
    • Diamantopoulou, M.J., 2005. Artificial neural networks as an alternative tool in pine bark volume estimation. Comput. Electron. Agric. 48, 235-244.
    • (2005) Comput. Electron. Agric. , vol.48 , pp. 235-244
    • Diamantopoulou, M.J.1
  • 19
    • 0037816650 scopus 로고    scopus 로고
    • Application of multivariate analysis and artificial neural networks for the differentiation of red wines from the canary islands according to the island of origin
    • Díaz, C., Conde, J.E., EstéVez, D., Olivero, S.J.P., Trujillo, J.P.P., 2003. Application of multivariate analysis and artificial neural networks for the differentiation of red wines from the canary islands according to the island of origin. J. Agric. Food Chem. 51, 4303-4307.
    • (2003) J. Agric. Food Chem. , vol.51 , pp. 4303-4307
    • Díaz, C.1    Conde, J.E.2    Estévez, D.3    Olivero, S.J.P.4    Trujillo, J.P.P.5
  • 22
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters
    • Dunn, J., 1974. A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. J. Cyber. 3(3), 32-57.
    • (1974) J. Cyber. , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.1
  • 23
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., 1996. From data mining to knowledge discovery in databases. AI Magazine -AAAI 17(3), 37-54.
    • (1996) AI Magazine -AAAI , vol.17 , Issue.3 , pp. 37-54
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 24
    • 0016533974 scopus 로고
    • A branch and bound algorithm for computing knearest neighbors
    • Fukunaga, K., Narendra, P.M., 1975. A branch and bound algorithm for computing knearest neighbors. IEEE Trans. Comput. 24(7), 750-753.
    • (1975) IEEE Trans. Comput. , vol.24 , Issue.7 , pp. 750-753
    • Fukunaga, K.1    Narendra, P.M.2
  • 25
    • 14644403073 scopus 로고    scopus 로고
    • Large-scale investigation of weed seed identification by machine vision
    • Granitto, P.M., Verdes, P.F., Ceccatto, H.A., 2005. Large-scale investigation of weed seed identification by machine vision. Comput. Electron. Agric. 47, 15-24.
    • (2005) Comput. Electron. Agric. , vol.47 , pp. 15-24
    • Granitto, P.M.1    Verdes, P.F.2    Ceccatto, H.A.3
  • 26
    • 0034555366 scopus 로고    scopus 로고
    • Use of genetic artificial neural networks and spectral imaging for defect detection on cherries
    • Guyer, D., Yang, X., 2000. Use of genetic artificial neural networks and spectral imaging for defect detection on cherries. Comput. Electron. Agric. 29, 179-194.
    • (2000) Comput. Electron. Agric. , vol.29 , pp. 179-194
    • Guyer, D.1    Yang, X.2
  • 27
    • 0034510219 scopus 로고    scopus 로고
    • Validity measures for the fuzzy cluster analysis of orientations
    • Hammah, R.E., Curran, J.H., 2000. Validity measures for the fuzzy cluster analysis of orientations. IEEE Trans. Patt. Anal. Mach. Intel. 22(12), 1467-1472.
    • (2000) IEEE Trans. Patt. Anal. Mach. Intel. , vol.22 , Issue.12 , pp. 1467-1472
    • Hammah, R.E.1    Curran, J.H.2
  • 28
    • 0034819175 scopus 로고    scopus 로고
    • J-means: A new local search heuristic for minimum sum of squares clustering
    • Hansen, P., Mladenovis, N., 2001. J-means: a new local search heuristic for minimum sum of squares clustering. Pattern Recognit. 34, 405-413.
    • (2001) Pattern Recognit. , vol.34 , pp. 405-413
    • Hansen, P.1    Mladenovis, N.2
  • 30
    • 0029304867 scopus 로고
    • Improving model accuracy using optimal linear combinations of trained neural networks
    • Hashem, S., Schmeiser, B., 1995. Improving model accuracy using optimal linear combinations of trained neural networks. IEEE Trans. Neural Netw. 6(3), 792-794.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.3 , pp. 792-794
    • Hashem, S.1    Schmeiser, B.2
  • 31
    • 0034298140 scopus 로고    scopus 로고
    • Generalized fuzzy c-means clustering strategies using L norm distances
    • Hathaway, R., Bezdek, J., Hu, Y., 2000. Generalized fuzzy c-means clustering strategies using L norm distances. IEEE Trans. Fuzzy Syst. 8(5) 576-582.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.5 , pp. 576-582
    • Hathaway, R.1    Bezdek, J.2    Hu, Y.3
  • 33
    • 0037052889 scopus 로고    scopus 로고
    • Forecasted reference sample plot data in estimations of stem volume using satellite spectral data and the k NN method
    • Holmstrom, H., Nilsson, M., Stahl, G., 2002. Forecasted reference sample plot data in estimations of stem volume using satellite spectral data and the k NN method. Int. J. Remote. Sens. 23(9), 1757-1774.
    • (2002) Int. J. Remote. Sens. , vol.23 , Issue.9 , pp. 1757-1774
    • Holmstrom, H.1    Nilsson, M.2    Stahl, G.3
  • 34
    • 0034307096 scopus 로고    scopus 로고
    • A daily harvest predict ion model of cherry tomatoes by mining from past averaging data and using topological case-based modeling
    • Hoshi, T., Sasaki, T., Tsutsui, H., Watanabe, T., Tagawa, F., 2000. A daily harvest predict ion model of cherry tomatoes by mining from past averaging data and using topological case-based modeling. Comput. Electron. Agric. 29, 149-160.
    • (2000) Comput. Electron. Agric. , vol.29 , pp. 149-160
    • Hoshi, T.1    Sasaki, T.2    Tsutsui, H.3    Watanabe, T.4    Tagawa, F.5
  • 36
    • 3743053629 scopus 로고    scopus 로고
    • Fast k classification algorithm based on partial distance search
    • Hwang, W.J., Wen, K.W., 1998. Fast k classification algorithm based on partial distance search. Electron. Lett. 34(21), 2062-2063.
    • (1998) Electron. Lett. , vol.34 , Issue.21 , pp. 2062-2063
    • Hwang, W.J.1    Wen, K.W.2
  • 39
    • 0003691871 scopus 로고
    • London: Collins Professional and Technical Books
    • James, M., 1985. Classification Algorithms. London: Collins Professional and Technical Books.
    • (1985) Classification Algorithms
    • James, M.1
  • 40
    • 0001130002 scopus 로고    scopus 로고
    • Multi-layer neural networks for image analysis of agricultural products
    • Jayas, D.S., Paliwal, J., Visen, N.S., 2000. Multi-layer neural networks for image analysis of agricultural products. J. Agric. Eng. Res. 77(2), 119-128.
    • (2000) J. Agric. Eng. Res. , vol.77 , Issue.2 , pp. 119-128
    • Jayas, D.S.1    Paliwal, J.2    Visen, N.S.3
  • 41
    • 0030736561 scopus 로고    scopus 로고
    • Combinations of weak classifiers
    • Ji, C., Ma, S., 1997. Combinations of weak classifiers. IEEE Tran. Neural Netw. 8(1), 32-42.
    • (1997) IEEE Tran. Neural Netw. , vol.8 , Issue.1 , pp. 32-42
    • Ji, C.1    Ma, S.2
  • 42
    • 0036556003 scopus 로고    scopus 로고
    • Constructing andtraining feed-forward neural networks for pattern classification
    • Jiang, X., Harvey, A., Wah, K.S., 2003. Constructing andtraining feed-forward neural networks for pattern classification. Pattern Recognit. 36, 853-867.
    • (2003) Pattern Recognit. , vol.36 , pp. 853-867
    • Jiang, X.1    Harvey, A.2    Wah, K.S.3
  • 44
    • 0031140630 scopus 로고    scopus 로고
    • A methodology for constructing fuzzy algorithms for learning vector quantization
    • Karayiannis, N.B., 1997. A methodology for constructing fuzzy algorithms for learning vector quantization. IEEE Trans. Neural Netw. 8(3), 505-518.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.3 , pp. 505-518
    • Karayiannis, N.B.1
  • 45
    • 33847335787 scopus 로고    scopus 로고
    • A classification system for beans using computer vision system and artificial neural networks
    • Kiliç, K., Boyaci, Í.H., Köksel, H., Küsmenoglu, Í., 2007. A classification system for beans using computer vision system and artificial neural networks. J. Food Eng. 78(3), 897-904.
    • (2007) J. Food Eng. , vol.78 , Issue.3 , pp. 897-904
    • Kiliç, K.1    Boyaci, Í.H.2    Köksel, H.3    Küsmenoglu, Í.4
  • 46
    • 0036531325 scopus 로고    scopus 로고
    • Reducing the time complexity of the fuzzy c-means algorithm
    • Kolen, J., Hutcheson, T., 2002. Reducing the time complexity of the fuzzy c-means algorithm, IEEE Trans. Fuzzy Syst. 10(2), 263-267.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 263-267
    • Kolen, J.1    Hutcheson, T.2
  • 47
    • 0034306908 scopus 로고    scopus 로고
    • Machine vision based quality evaluation of Iyokan orange fruit using neural networks
    • Kondo, N., Ahmad, U., Monta, M., Murase, H., 2000. Machine vision based quality evaluation of Iyokan orange fruit using neural networks, Comput. Electron. Agric. 29, 135-147.
    • (2000) Comput. Electron. Agric. , vol.29 , pp. 135-147
    • Kondo, N.1    Ahmad, U.2    Monta, M.3    Murase, H.4
  • 50
    • 0031168619 scopus 로고    scopus 로고
    • Fitness functions in editing k-NN reference set by genetic algorithms
    • Kuncheva, L.I., 1997. Fitness functions in editing k-NN reference set by genetic algorithms. Pattern Recognit. 30(6), 1041-1049.
    • (1997) Pattern Recognit. , vol.30 , Issue.6 , pp. 1041-1049
    • Kuncheva, L.I.1
  • 51
    • 33748789587 scopus 로고    scopus 로고
    • Classifying regenerating forest stages in Amazô nia using remotely sensed images and a neural network
    • Kuplich, T.M., 2006. Classifying regenerating forest stages in Amazô nia using remotely sensed images and a neural network. Forest Ecol. Manage. 234(1-3), 1-9.
    • (2006) Forest Ecol. Manage. , vol.234 , Issue.1-3 , pp. 1-9
    • Kuplich, T.M.1
  • 52
    • 33144460268 scopus 로고    scopus 로고
    • A genetic algorithm using hyper-quadtrees for lowdimensional k-means clustering
    • Laszlo, M., Mukherjee, S., 2006. A genetic algorithm using hyper-quadtrees for lowdimensional k-means clustering. IEEE Trans. Pattern. Anal. Mach. Intell. 28(4) 533-543.
    • (2006) IEEE Trans. Pattern. Anal. Mach. Intell. , vol.28 , Issue.4 , pp. 533-543
    • Laszlo, M.1    Mukherjee, S.2
  • 54
    • 0042693195 scopus 로고    scopus 로고
    • Areal time grading method of apples based on features extracted from defects
    • Leemans, V., Destain, M.F., 2004. Areal time grading method of apples based on features extracted from defects. J. Food Eng. 61, 83-89.
    • (2004) J. Food Eng. , vol.61 , pp. 83-89
    • Leemans, V.1    Destain, M.F.2
  • 55
    • 0036487280 scopus 로고    scopus 로고
    • The global k-means clustering algorithm
    • Likasa, A., Vlassis, N., Verbeek, J.J., 2003. The global k-means clustering algorithm. Pattern Recognit. 36(2), 451-461.
    • (2003) Pattern Recognit. , vol.36 , Issue.2 , pp. 451-461
    • Likasa, A.1    Vlassis, N.2    Verbeek, J.J.3
  • 57
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley: University of California Press
    • MacQueen, J.B., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, Vol 1, pp. 281-297.
    • (1967) Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 58
    • 10044260285 scopus 로고    scopus 로고
    • Classification of bulk samples of cereal grains using machine vision
    • Majumdar, S., Jayas, D.S., 1999. Classification of bulk samples of cereal grains using machine vision. J. Agric. Eng. Res. 73(1), 35-47.
    • (1999) J. Agric. Eng. Res. , vol.73 , Issue.1 , pp. 35-47
    • Majumdar, S.1    Jayas, D.S.2
  • 59
    • 0037380774 scopus 로고    scopus 로고
    • Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination
    • Marchant, J.A., Onyango, C.M., 2003. Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination. Comput. Electron. Agric. 39, 3-22.
    • (2003) Comput. Electron. Agric. , vol.39 , pp. 3-22
    • Marchant, J.A.1    Onyango, C.M.2
  • 60
    • 0141590586 scopus 로고    scopus 로고
    • Modeling of fried potato chips color classification using image analysis and artificial neural network
    • Marique, T., Kharoubi, A., Bauffe, P., Ducattillion, C., 2003. Modeling of fried potato chips color classification using image analysis and artificial neural network. J. Food Eng. Phys. Prop. 68(7), 2263-2266.
    • (2003) J. Food Eng. Phys. Prop. , vol.68 , Issue.7 , pp. 2263-2266
    • Marique, T.1    Kharoubi, A.2    Bauffe, P.3    Ducattillion, C.4
  • 61
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • Maulik, U., Bandyopadhyay, S., 2000. Genetic algorithm-based clustering technique. Pattern Recognit. 33, 1455-1465.
    • (2000) Pattern Recognit. , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 62
    • 0006656288 scopus 로고
    • Vision systems for the location of citrus fruit in a tree canopy
    • Molto, E., Pla, F., Juste, F., 1992. Vision systems for the location of citrus fruit in a tree canopy. J. Agric. Eng. Res. 52, 101-110.
    • (1992) J. Agric. Eng. Res. , vol.52 , pp. 101-110
    • Molto, E.1    Pla, F.2    Juste, F.3
  • 63
    • 0034033919 scopus 로고    scopus 로고
    • Pattern recognition of fruit shape based on the concept of chaos and neural networks
    • Morimoto, T., Takeuchi, T., Miyata, H., Hashimoto, Y., 2000. Pattern recognition of fruit shape based on the concept of chaos and neural networks. Comput. Electron. Agric. 26, 171-186.
    • (2000) Comput. Electron. Agric. , vol.26 , pp. 171-186
    • Morimoto, T.1    Takeuchi, T.2    Miyata, H.3    Hashimoto, Y.4
  • 64
    • 0031211714 scopus 로고    scopus 로고
    • Application of neural networks to the color grading of apples
    • Nakano, K., 1997. Application of neural networks to the color grading of apples. Comput. Electron. Agric. 18, 105-116.
    • (1997) Comput. Electron. Agric. , vol.18 , pp. 105-116
    • Nakano, K.1
  • 66
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Pal, N.R., Bezdek, J.C., 1995. On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy. Syst. 3(3), 370-379.
    • (1995) IEEE Trans. Fuzzy. Syst. , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 67
    • 0005331171 scopus 로고    scopus 로고
    • Evaluation of neural network architectures for cereal grain classification using morphological features
    • Paliwal, J., Visen, N.S., Jayas, D.S., 2001. Evaluation of neural network architectures for cereal grain classification using morphological features. J. Agric. Eng. Res. 79(4), 361-370.
    • (2001) J. Agric. Eng. Res. , vol.79 , Issue.4 , pp. 361-370
    • Paliwal, J.1    Visen, N.S.2    Jayas, D.S.3
  • 70
    • 0017537473 scopus 로고
    • Pictorial pattern recognition applied to fruit harvesting
    • Parrish Jr., A.E., Goksel, A.K., 1977. Pictorial pattern recognition applied to fruit harvesting. Trans. ASAE 20(5), 822-827.
    • (1977) Trans. ASAE , vol.20 , Issue.5 , pp. 822-827
    • Parrish, A.E.1    Goksel, A.K.2
  • 71
    • 4644329616 scopus 로고    scopus 로고
    • Bayesian network classifiers versus selective k-NN classifier
    • Pernkopf, F., 2005. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognit. 38(1), 1-10.
    • (2005) Pattern Recognit. , vol.38 , Issue.1 , pp. 1-10
    • Pernkopf, F.1
  • 72
    • 0035506071 scopus 로고    scopus 로고
    • Localization of spherical fruits for robotic harvesting
    • Plebe, A., Grasso, G., 2001. Localization of spherical fruits for robotic harvesting. Mach. Vision. Appl. 13, 70-79.
    • (2001) Mach. Vision. Appl. , vol.13 , pp. 70-79
    • Plebe, A.1    Grasso, G.2
  • 73
    • 28944452557 scopus 로고    scopus 로고
    • Statistical and neural network classfiers for citrus disease detection using machine vision
    • Pydipati, R., Burks, T.F., Lee, W.S., 2005. Statistical and neural network classfiers for citrus disease detection using machine vision. Trans. ASAE 48(5), 2007-2014.
    • (2005) Trans. ASAE , vol.48 , Issue.5 , pp. 2007-2014
    • Pydipati, R.1    Burks, T.F.2    Lee, W.S.3
  • 74
    • 33646118990 scopus 로고    scopus 로고
    • Identification of citrus disease using color texture features and discriminant analysis
    • Pydipati, R., Burks, T.F., Lee, W.S., 2006. Identification of citrus disease using color texture features and discriminant analysis. Comput. Electron. Agric. 52, 49-59.
    • (2006) Comput. Electron. Agric. , vol.52 , pp. 49-59
    • Pydipati, R.1    Burks, T.F.2    Lee, W.S.3
  • 75
    • 21644437630 scopus 로고    scopus 로고
    • Improved k nearest neighbor classification algorithm. The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 6-9 Dec
    • Qiao, Y.L., Pan, J.S., Sun, S.H., 2004. Improved k nearest neighbor classification algorithm. The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 6-9 Dec. IEEE Transaction on Circuits and Systems, Vol. 2, pp. 1101-1104.
    • (2004) IEEE Transaction on Circuits and Systems , vol.2 , pp. 1101-1104
    • Qiao, Y.L.1    Pan, J.S.2    Sun, S.H.3
  • 76
    • 0343789644 scopus 로고    scopus 로고
    • Classification of aged wine distillates using fuzzy and neural network systems
    • Raptis, C.G., Siettos, C.I., Kiranoudis, C.T., Bafas, G.V., 2000. Classification of aged wine distillates using fuzzy and neural network systems. J. Food Eng. 46, 267-275.
    • (2000) J. Food Eng. , vol.46 , pp. 267-275
    • Raptis, C.G.1    Siettos, C.I.2    Kiranoudis, C.T.3    Bafas, G.V.4
  • 77
    • 0036899365 scopus 로고    scopus 로고
    • Applications using estimates of forest parameters derived from satellite and forest inventory data
    • Reese, H., Nilsson, M., Sandström, P., Olsson, H., 2002. Applications using estimates of forest parameters derived from satellite and forest inventory data. Comput. Electron. Agric. 37, 37-55.
    • (2002) Comput. Electron. Agric. , vol.37 , pp. 37-55
    • Reese, H.1    Nilsson, M.2    Sandström, P.3    Olsson, H.4
  • 79
    • 0031062366 scopus 로고    scopus 로고
    • A neural network system for the protection of citrus crops from frost damage
    • Robinson, C., Mort, N., 1997. A neural network system for the protection of citrus crops from frost damage. Comput. Electron. Agric. 16, 177-187.
    • (1997) Comput. Electron. Agric. , vol.16 , pp. 177-187
    • Robinson, C.1    Mort, N.2
  • 80
    • 0000254736 scopus 로고    scopus 로고
    • Artificial intelligence classifiers for sorting apples based on water core
    • Shahin, M.A., Tollner, E.W., McClendon, R.W., 2001. Artificial intelligence classifiers for sorting apples based on water core. J. Agric. Eng. Res. 79(3), 265-274.
    • (2001) J. Agric. Eng. Res. , vol.79 , Issue.3 , pp. 265-274
    • Shahin, M.A.1    Tollner, E.W.2    McClendon, R.W.3
  • 81
    • 38249007291 scopus 로고
    • Orientation independent machine vision classification of plant parts
    • Simonton, W., Pease, J., 1993. Orientation independent machine vision classification of plant parts. J. Agric. Eng. Res. 54(3), 231-243.
    • (1993) J. Agric. Eng. Res. , vol.54 , Issue.3 , pp. 231-243
    • Simonton, W.1    Pease, J.2
  • 82
    • 0001592197 scopus 로고
    • Color vision in robotic fruit harvesting
    • Slaughter, D.C., Harrell, R.C., 1987. Color vision in robotic fruit harvesting. Trans. ASAE 30(4), 1144-1148.
    • (1987) Trans. ASAE , vol.30 , Issue.4 , pp. 1144-1148
    • Slaughter, D.C.1    Harrell, R.C.2
  • 83
    • 0024621597 scopus 로고
    • Discriminating fruit for robotic harvest using color in natural outdoor scenes
    • Slaughter, D.C., Harrell, R.C., 1989. Discriminating fruit for robotic harvest using color in natural outdoor scenes. Trans. ASAE 32(2), 757-763.
    • (1989) Trans. ASAE , vol.32 , Issue.2 , pp. 757-763
    • Slaughter, D.C.1    Harrell, R.C.2
  • 84
    • 1242338186 scopus 로고    scopus 로고
    • Regularising neural networks using flexible multivariate activation function
    • Solazzia, M., Uncinib, A., 2004. Regularising neural networks using flexible multivariate activation function. Neural. Netw. 17(2), 247-260.
    • (2004) Neural. Netw. , vol.17 , Issue.2 , pp. 247-260
    • Solazzia, M.1    Uncinib, A.2
  • 85
    • 0035365076 scopus 로고    scopus 로고
    • A modified version of the K-means algorithm with a distance based on cluster symmetry
    • Su, M., Chou, C., 2001. A modified version of the K-means algorithm with a distance based on cluster symmetry. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 674-680.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.6 , pp. 674-680
    • Su, M.1    Chou, C.2
  • 86
    • 0001031519 scopus 로고    scopus 로고
    • Classification of wine samples by means of artificial neural networks and discrimination analytical methods
    • Sun, L.X., Danzer, K., Thiel, G., 1997. Classification of wine samples by means of artificial neural networks and discrimination analytical methods. Fres. J. Anal. Chem. 359, 143-149.
    • (1997) Fres. J. Anal. Chem. , vol.359 , pp. 143-149
    • Sun, L.X.1    Danzer, K.2    Thiel, G.3
  • 87
  • 88
    • 0036779076 scopus 로고    scopus 로고
    • Improved k-nearest neighbor classification
    • Wu, Y., Ianakiev, K., Govindaraju, V., 2002. Improved k-nearest neighbor classification. Pattern Recognit. 35, 2311-2318.
    • (2002) Pattern Recognit. , vol.35 , pp. 2311-2318
    • Wu, Y.1    Ianakiev, K.2    Govindaraju, V.3
  • 89
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu, R., 2005. Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645-678.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1
  • 90
    • 0028482884 scopus 로고
    • Approximate clustering via the mountain method
    • Yager, R.R., Filev, D.P., 1994. Approximate clustering via the mountain method. IEEE Trans. Syst. Man Cyber. 24(8), 1279-1284.
    • (1994) IEEE Trans. Syst. Man Cyber. , vol.24 , Issue.8 , pp. 1279-1284
    • Yager, R.R.1    Filev, D.P.2
  • 91
    • 27944494029 scopus 로고    scopus 로고
    • An extension of the naive Bayesian classifier
    • Yager, R.R., 2006. An extension of the naive Bayesian classifier. Inf. Sci. 176(5), 577-588.
    • (2006) Inf. Sci. , vol.176 , Issue.5 , pp. 577-588
    • Yager, R.R.1
  • 92
    • 0029304808 scopus 로고
    • Dynamic learning rate optimization of the back propagation algorithm
    • Yu, X., Chen, G., Cheng, S., 1995. Dynamic learning rate optimization of the back propagation algorithm. IEEE Trans. Neural Netw. 6(3), 669-677.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.3 , pp. 669-677
    • Yu, X.1    Chen, G.2    Cheng, S.3
  • 93
    • 0034313673 scopus 로고    scopus 로고
    • Neural networks for classification: A survey
    • Zhang, G.P., 2000. Neural networks for classification: a survey. IEEE Trans. Syst. Man Cyber. 30(4), 451-462.
    • (2000) IEEE Trans. Syst. Man Cyber. , vol.30 , Issue.4 , pp. 451-462
    • Zhang, G.P.1
  • 94
    • 1942532748 scopus 로고    scopus 로고
    • Improved possibilistic c-means clustering algorithms
    • Zhang, J.S., Leung, Y.W., 2004. Improved possibilistic c-means clustering algorithms. IEEE Trans. Fuzzy. Syst. 12(2), 209-217.
    • (2004) IEEE Trans. Fuzzy. Syst. , vol.12 , Issue.2 , pp. 209-217
    • Zhang, J.S.1    Leung, Y.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.