메뉴 건너뛰기




Volumn 34, Issue 19, 2016, Pages 2317-2318

Looking beyond the numbers: Highlighting the challenges of population-based studies in cancer research

Author keywords

[No Author keywords available]

Indexed keywords

CANCER PATIENT; CANCER RESEARCH; CANCER SURVIVAL; HEAD AND NECK CANCER; HUMAN; LETTER; NEOPLASM; POPULATION RESEARCH; PRIORITY JOURNAL; PUBLICATION; RADIATION ONCOLOGIST; TIME TO TREATMENT; METHODOLOGY;

EID: 84976265457     PISSN: 0732183X     EISSN: 15277755     Source Type: Journal    
DOI: 10.1200/JCO.2015.66.0894     Document Type: Letter
Times cited : (15)

References (5)
  • 1
    • 84954210296 scopus 로고    scopus 로고
    • Survival impact of increasing time to treatment initiation for patients with head and neck cancer in the United States
    • Murphy CT, Galloway TJ, Handorf EA, et al: Survival impact of increasing time to treatment initiation for patients with head and neck cancer in the United States. J Clin Oncol 34:169-178, 2016
    • (2016) J Clin Oncol , vol.34 , pp. 169-178
    • Murphy, C.T.1    Galloway, T.J.2    Handorf, E.A.3
  • 2
    • 47249165270 scopus 로고    scopus 로고
    • Limits of observational data in determining outcomes from cancer therapy
    • Giordano SH, Kuo Y-F, Duan Z, et al: Limits of observational data in determining outcomes from cancer therapy. Cancer 112:2456-2466, 2008
    • (2008) Cancer , vol.112 , pp. 2456-2466
    • Giordano, S.H.1    Kuo, Y.-F.2    Duan, Z.3
  • 3
    • 0025253925 scopus 로고
    • Impact of the time interval between surgery and postoperative radiation therapy on locoregional control in advanced head and neck cancer
    • Schiff PB, Harrison LB, Strong EW, et al: Impact of the time interval between surgery and postoperative radiation therapy on locoregional control in advanced head and neck cancer. J Surg Oncol 43:203-208, 1990
    • (1990) J Surg Oncol , vol.43 , pp. 203-208
    • Schiff, P.B.1    Harrison, L.B.2    Strong, E.W.3
  • 4
    • 84946716146 scopus 로고    scopus 로고
    • Machine learning approaches for predicting radiation therapy outcomes: A clinician's perspective
    • Kang J, Schwartz R, Flickinger J, et al: Machine learning approaches for predicting radiation therapy outcomes: A clinician's perspective. Int J Radiat Oncol Biol Phys 93:1127-1135, 2015
    • (2015) Int J Radiat Oncol Biol Phys , vol.93 , pp. 1127-1135
    • Kang, J.1    Schwartz, R.2    Flickinger, J.3
  • 5
    • 0026083477 scopus 로고
    • The national cancer data base
    • Murphy GP: The National Cancer Data Base. CA Cancer J Clin 41:5-6, 1991
    • (1991) CA Cancer J Clin , vol.41 , pp. 5-6
    • Murphy, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.