메뉴 건너뛰기




Volumn 4393 LNCS, Issue , 2007, Pages 524-535

On completing latin squares

Author keywords

[No Author keywords available]

Indexed keywords

LEAST SQUARES APPROXIMATIONS; PROBLEM SOLVING; THRESHOLD LOGIC;

EID: 84975751680     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-70918-3_45     Document Type: Conference Paper
Times cited : (14)

References (14)
  • 2
    • 0037760934 scopus 로고
    • The complexity of completing partial latin squares
    • C. J. Colbourn. The complexity of completing partial latin squares. Discrete Applied Mathematics, 8:25-30, 1984.
    • (1984) Discrete Applied Mathematics , vol.8 , pp. 25-30
    • Colbourn, C.J.1
  • 3
    • 0013537441 scopus 로고
    • Embedding incomplete latin squares
    • T. Evans. Embedding incomplete latin squares. American Mathematical Monthly, 67:958-961, 1960.
    • (1960) American Mathematical Monthly , vol.67 , pp. 958-961
    • Evans, T.1
  • 4
    • 0032108328 scopus 로고    scopus 로고
    • A threshold of In n for approximating set cover
    • U. Feige. A threshold of In n for approximating set cover. Journal of the ACM, 45(4):634-652, 1998.
    • (1998) Journal of the ACM , vol.45 , Issue.4 , pp. 634-652
    • Feige, U.1
  • 5
    • 2342576868 scopus 로고    scopus 로고
    • An improved approximation algorithm for the partial latin square extension problem
    • C. P. Gomes, R. G. Regis, and D. B. Shmoys. An improved approximation algorithm for the partial latin square extension problem. Operations Research Letters, 32(5):479-484, 2004.
    • (2004) Operations Research Letters , vol.32 , Issue.5 , pp. 479-484
    • Gomes, C.P.1    Regis, R.G.2    Shmoys, D.B.3
  • 7
    • 0010548027 scopus 로고
    • The NP-completeness of some edge-partition problems
    • I. Holyer. The NP-completeness of some edge-partition problems. SIAM Journal on Computing, 10(4):713-717, 1981.
    • (1981) SIAM Journal on Computing , vol.10 , Issue.4 , pp. 713-717
    • Holyer, I.1
  • 8
    • 0002980001 scopus 로고
    • On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems
    • C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM Journal on Discrete Mathematics, 2(1):68-72, 1989.
    • (1989) SIAM Journal on Discrete Mathematics , vol.2 , Issue.1 , pp. 68-72
    • Hurkens, C.A.J.1    Schrijver, A.2
  • 10
    • 0038437484 scopus 로고    scopus 로고
    • Approximating latin square extensions
    • R. Kumar, A. Russell, and R. Sundaram. Approximating latin square extensions. Algorithmica, 24(2):128-138, 1999.
    • (1999) Algorithmica , vol.24 , Issue.2 , pp. 128-138
    • Kumar, R.1    Russell, A.2    Sundaram, R.3
  • 11
    • 51249173817 scopus 로고
    • Randomized rounding: A technique for provably good algorithms and algorithmic proofs
    • P. Raghavan and C.D. Thompson. Randomized rounding: A technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4): 365-374, 1987.
    • (1987) Combinatorica , vol.7 , Issue.4 , pp. 365-374
    • Raghavan, P.1    Thompson, C.D.2
  • 12
    • 84968521851 scopus 로고
    • A combinatorial theorem with an application to latin rectangles
    • H. J. Ryser. A combinatorial theorem with an application to latin rectangles. Proceedings of the American Mathematical Society, 2:550-552, 1951.
    • (1951) Proceedings of the American Mathematical Society , vol.2 , pp. 550-552
    • Ryser, H.J.1
  • 13
    • 0042488236 scopus 로고
    • A new construction on Latin squares I. A proof of the Evans conjecture
    • B. Smetaniuk. A new construction on Latin squares I. A proof of the Evans conjecture. Ars Combinatoria, XL155-172, 1981.
    • (1981) Ars Combinatoria , vol.XL155-172
    • Smetaniuk, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.