-
2
-
-
0037760934
-
The complexity of completing partial latin squares
-
C. J. Colbourn. The complexity of completing partial latin squares. Discrete Applied Mathematics, 8:25-30, 1984.
-
(1984)
Discrete Applied Mathematics
, vol.8
, pp. 25-30
-
-
Colbourn, C.J.1
-
3
-
-
0013537441
-
Embedding incomplete latin squares
-
T. Evans. Embedding incomplete latin squares. American Mathematical Monthly, 67:958-961, 1960.
-
(1960)
American Mathematical Monthly
, vol.67
, pp. 958-961
-
-
Evans, T.1
-
4
-
-
0032108328
-
A threshold of In n for approximating set cover
-
U. Feige. A threshold of In n for approximating set cover. Journal of the ACM, 45(4):634-652, 1998.
-
(1998)
Journal of the ACM
, vol.45
, Issue.4
, pp. 634-652
-
-
Feige, U.1
-
5
-
-
2342576868
-
An improved approximation algorithm for the partial latin square extension problem
-
C. P. Gomes, R. G. Regis, and D. B. Shmoys. An improved approximation algorithm for the partial latin square extension problem. Operations Research Letters, 32(5):479-484, 2004.
-
(2004)
Operations Research Letters
, vol.32
, Issue.5
, pp. 479-484
-
-
Gomes, C.P.1
Regis, R.G.2
Shmoys, D.B.3
-
7
-
-
0010548027
-
The NP-completeness of some edge-partition problems
-
I. Holyer. The NP-completeness of some edge-partition problems. SIAM Journal on Computing, 10(4):713-717, 1981.
-
(1981)
SIAM Journal on Computing
, vol.10
, Issue.4
, pp. 713-717
-
-
Holyer, I.1
-
8
-
-
0002980001
-
On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems
-
C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM Journal on Discrete Mathematics, 2(1):68-72, 1989.
-
(1989)
SIAM Journal on Discrete Mathematics
, vol.2
, Issue.1
, pp. 68-72
-
-
Hurkens, C.A.J.1
Schrijver, A.2
-
10
-
-
0038437484
-
Approximating latin square extensions
-
R. Kumar, A. Russell, and R. Sundaram. Approximating latin square extensions. Algorithmica, 24(2):128-138, 1999.
-
(1999)
Algorithmica
, vol.24
, Issue.2
, pp. 128-138
-
-
Kumar, R.1
Russell, A.2
Sundaram, R.3
-
11
-
-
51249173817
-
Randomized rounding: A technique for provably good algorithms and algorithmic proofs
-
P. Raghavan and C.D. Thompson. Randomized rounding: A technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4): 365-374, 1987.
-
(1987)
Combinatorica
, vol.7
, Issue.4
, pp. 365-374
-
-
Raghavan, P.1
Thompson, C.D.2
-
12
-
-
84968521851
-
A combinatorial theorem with an application to latin rectangles
-
H. J. Ryser. A combinatorial theorem with an application to latin rectangles. Proceedings of the American Mathematical Society, 2:550-552, 1951.
-
(1951)
Proceedings of the American Mathematical Society
, vol.2
, pp. 550-552
-
-
Ryser, H.J.1
-
13
-
-
0042488236
-
A new construction on Latin squares I. A proof of the Evans conjecture
-
B. Smetaniuk. A new construction on Latin squares I. A proof of the Evans conjecture. Ars Combinatoria, XL155-172, 1981.
-
(1981)
Ars Combinatoria
, vol.XL155-172
-
-
Smetaniuk, B.1
|