-
1
-
-
0020458787
-
Plant productivity and environment
-
1 Boyer, J.S., Plant productivity and environment. Science 218 (1982), 443–448.
-
(1982)
Science
, vol.218
, pp. 443-448
-
-
Boyer, J.S.1
-
2
-
-
0347300280
-
Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance
-
2 Wang, W., et al. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218 (2003), 1–14.
-
(2003)
Planta
, vol.218
, pp. 1-14
-
-
Wang, W.1
-
3
-
-
0037888827
-
Biotechnology of plant osmotic stress tolerance physiological and molecular considerations
-
3 Wang, W.X., et al. Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. Acta Hortic. 560 (2001), 285–292.
-
(2001)
Acta Hortic.
, vol.560
, pp. 285-292
-
-
Wang, W.X.1
-
4
-
-
84857964166
-
Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks
-
4 Krasensky, J., Jonak, C., Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63 (2012), 1593–1608.
-
(2012)
J. Exp. Bot.
, vol.63
, pp. 1593-1608
-
-
Krasensky, J.1
Jonak, C.2
-
5
-
-
0019302045
-
The mechanism of the sodium pump
-
5 Levitt, D.G., The mechanism of the sodium pump. Biochim. Biophys. Acta 604 (1980), 321–345.
-
(1980)
Biochim. Biophys. Acta
, vol.604
, pp. 321-345
-
-
Levitt, D.G.1
-
6
-
-
14644430438
-
Drought and salt tolerance in plants
-
6 Bartels, D., Sunkar, R., Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24 (2005), 23–58.
-
(2005)
Crit. Rev. Plant Sci.
, vol.24
, pp. 23-58
-
-
Bartels, D.1
Sunkar, R.2
-
7
-
-
79952477839
-
Abiotic stress and plant responses from the whole vine to the genes
-
7 Cramer, G.R., Abiotic stress and plant responses from the whole vine to the genes. Aust. J. Grape Wine Res. 16 (2010), 86–93.
-
(2010)
Aust. J. Grape Wine Res.
, vol.16
, pp. 86-93
-
-
Cramer, G.R.1
-
8
-
-
77952742620
-
More from less: plant growth under limited water
-
8 Skirycz, A., Inzé, D., More from less: plant growth under limited water. Curr. Opin. Biotechnol. 21 (2010), 197–203.
-
(2010)
Curr. Opin. Biotechnol.
, vol.21
, pp. 197-203
-
-
Skirycz, A.1
Inzé, D.2
-
9
-
-
81155151500
-
Effects of abiotic stress on plants: a systems biology perspective
-
9 Cramer, G.R., et al. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol., 11, 2011, 163.
-
(2011)
BMC Plant Biol.
, vol.11
, pp. 163
-
-
Cramer, G.R.1
-
10
-
-
33344460036
-
Understanding regulatory networks and engineering for enhanced drought tolerance in plants
-
10 Valliyodan, B., Nguyen, H.T., Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9 (2006), 189–195.
-
(2006)
Curr. Opin. Plant Biol.
, vol.9
, pp. 189-195
-
-
Valliyodan, B.1
Nguyen, H.T.2
-
11
-
-
75749084035
-
Proline: a multifunctional amino acid
-
11 Szabados, L., Savouré, A., Proline: a multifunctional amino acid. Trends Plant Sci. 15 (2010), 89–97.
-
(2010)
Trends Plant Sci.
, vol.15
, pp. 89-97
-
-
Szabados, L.1
Savouré, A.2
-
12
-
-
84856594225
-
Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants
-
12 Khraiwesh, B., et al. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim. Biophys. Acta 1819 (2012), 137–148.
-
(2012)
Biochim. Biophys. Acta
, vol.1819
, pp. 137-148
-
-
Khraiwesh, B.1
-
13
-
-
84885182789
-
Involvement of histone modifications in plant abiotic stress responses
-
13 Yuan, L., et al. Involvement of histone modifications in plant abiotic stress responses. J. Integr. Plant Biol. 55 (2013), 892–901.
-
(2013)
J. Integr. Plant Biol.
, vol.55
, pp. 892-901
-
-
Yuan, L.1
-
14
-
-
34648834403
-
Cold stress regulation of gene expression in plants
-
14 Chinnusamy, V., et al. Cold stress regulation of gene expression in plants. Trends Plant Sci. 12 (2007), 444–451.
-
(2007)
Trends Plant Sci.
, vol.12
, pp. 444-451
-
-
Chinnusamy, V.1
-
15
-
-
33846798370
-
Gene networks involved in drought stress response and tolerance
-
15 Shinozaki, K., Yamaguchi-Shinozaki, K., Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58 (2007), 221–227.
-
(2007)
J. Exp. Bot.
, vol.58
, pp. 221-227
-
-
Shinozaki, K.1
Yamaguchi-Shinozaki, K.2
-
16
-
-
84959135421
-
A new look at stress: abscisic acid patterns and dynamics at high-resolution
-
16 Jones, A.M., A new look at stress: abscisic acid patterns and dynamics at high-resolution. New Phytol. 210 (2016), 38–44.
-
(2016)
New Phytol.
, vol.210
, pp. 38-44
-
-
Jones, A.M.1
-
17
-
-
71449104756
-
In vitro reconstitution of an abscisic acid signalling pathway
-
17 Fujii, H., et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462 (2009), 660–664.
-
(2009)
Nature
, vol.462
, pp. 660-664
-
-
Fujii, H.1
-
18
-
-
66249133969
-
Regulators of PP2C phosphatase activity function as abscisic acid sensors
-
18 Ma, Y., et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324 (2009), 1064–1068.
-
(2009)
Science
, vol.324
, pp. 1064-1068
-
-
Ma, Y.1
-
19
-
-
66249110335
-
Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins
-
19 Park, S.-Y., et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324 (2009), 1068–1071.
-
(2009)
Science
, vol.324
, pp. 1068-1071
-
-
Park, S.-Y.1
-
20
-
-
77952511548
-
Abscisic acid: emergence of a core signaling network
-
20 Cutler, S.R., et al. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61 (2010), 651–679.
-
(2010)
Annu. Rev. Plant Biol.
, vol.61
, pp. 651-679
-
-
Cutler, S.R.1
-
21
-
-
33847208920
-
Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid
-
21 Boudsocq, M., et al. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol. Biol. 63 (2007), 491–503.
-
(2007)
Plant Mol. Biol.
, vol.63
, pp. 491-503
-
-
Boudsocq, M.1
-
22
-
-
71449125712
-
The abscisic acid receptor PYR1 in complex with abscisic acid
-
22 Santiago, J., et al. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462 (2009), 665–668.
-
(2009)
Nature
, vol.462
, pp. 665-668
-
-
Santiago, J.1
-
23
-
-
84864486781
-
Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid
-
23 Gonzalez-Guzman, M., et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24 (2012), 2483–2496.
-
(2012)
Plant Cell
, vol.24
, pp. 2483-2496
-
-
Gonzalez-Guzman, M.1
-
24
-
-
71549134755
-
Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs
-
24 Santiago, J., et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 60 (2009), 575–588.
-
(2009)
Plant J.
, vol.60
, pp. 575-588
-
-
Santiago, J.1
-
25
-
-
73249123581
-
The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress
-
25 Saavedra, X., et al. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol. 152 (2010), 133–150.
-
(2010)
Plant Physiol.
, vol.152
, pp. 133-150
-
-
Saavedra, X.1
-
26
-
-
82555198807
-
A brand new START: abscisic acid perception and transduction in the guard cell
-
26 Joshi-Saha, A., et al. A brand new START: abscisic acid perception and transduction in the guard cell. Sci. Signal., 4, 2011, re4.
-
(2011)
Sci. Signal.
, vol.4
, pp. re4
-
-
Joshi-Saha, A.1
-
27
-
-
0036075154
-
Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation
-
27 Merlot, S., et al. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 30 (2002), 601–609.
-
(2002)
Plant J.
, vol.30
, pp. 601-609
-
-
Merlot, S.1
-
28
-
-
84876121995
-
Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana
-
28 Umezawa, T., et al. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal., 6, 2013, rs8.
-
(2013)
Sci. Signal.
, vol.6
, pp. rs8
-
-
Umezawa, T.1
-
29
-
-
73149112823
-
Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase
-
29 Sato, A., et al. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem. J. 424 (2009), 439–448.
-
(2009)
Biochem. J.
, vol.424
, pp. 439-448
-
-
Sato, A.1
-
30
-
-
84879732650
-
Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action
-
30 Wang, P., et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 11205–11210.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 11205-11210
-
-
Wang, P.1
-
31
-
-
0034633775
-
Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions
-
31 Uno, Y., et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. 97 (2000), 11632–11637.
-
(2000)
Proc. Natl. Acad. Sci.
, vol.97
, pp. 11632-11637
-
-
Uno, Y.1
-
32
-
-
0036910332
-
Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1
-
32 Kagaya, Y., et al. Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 14 (2002), 3177–3189.
-
(2002)
Plant Cell
, vol.14
, pp. 3177-3189
-
-
Kagaya, Y.1
-
33
-
-
32444443392
-
Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1
-
33 Furihata, T., et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. 103 (2006), 1988–1993.
-
(2006)
Proc. Natl. Acad. Sci.
, vol.103
, pp. 1988-1993
-
-
Furihata, T.1
-
34
-
-
71049140992
-
Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis
-
34 Fujita, Y., et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50 (2009), 2123–2132.
-
(2009)
Plant Cell Physiol.
, vol.50
, pp. 2123-2132
-
-
Fujita, Y.1
-
35
-
-
78349276098
-
Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport
-
35 Umezawa, T., et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol. 51 (2010), 1821–1839.
-
(2010)
Plant Cell Physiol.
, vol.51
, pp. 1821-1839
-
-
Umezawa, T.1
-
36
-
-
0037197676
-
Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein
-
36 Ichimura, T., et al. Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein. Biochemistry 41 (2002), 5566–5572.
-
(2002)
Biochemistry
, vol.41
, pp. 5566-5572
-
-
Ichimura, T.1
-
37
-
-
48149106793
-
Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes
-
37 Colcombet, J., Hirt, H., Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem. J. 413 (2008), 217–226.
-
(2008)
Biochem. J.
, vol.413
, pp. 217-226
-
-
Colcombet, J.1
Hirt, H.2
-
38
-
-
0036779326
-
Hydrogen peroxide signalling
-
38 Neill, S., et al. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5 (2002), 388–395.
-
(2002)
Curr. Opin. Plant Biol.
, vol.5
, pp. 388-395
-
-
Neill, S.1
-
39
-
-
58149498875
-
MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays
-
39 Popescu, S.C., et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 23 (2009), 80–92.
-
(2009)
Genes Dev.
, vol.23
, pp. 80-92
-
-
Popescu, S.C.1
-
40
-
-
78650154390
-
MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways
-
40 Taj, G., et al. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal. Behav. 5 (2010), 1370–1378.
-
(2010)
Plant Signal. Behav.
, vol.5
, pp. 1370-1378
-
-
Taj, G.1
-
41
-
-
84926373170
-
Signaling mechanisms in pattern-triggered immunity (PTI)
-
41 Bigeard, J., et al. Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8 (2015), 521–539.
-
(2015)
Mol. Plant
, vol.8
, pp. 521-539
-
-
Bigeard, J.1
-
42
-
-
84895071094
-
The role of ABA and MAPK signaling pathways in plant abiotic stress responses
-
42 Danquah, A., et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 32 (2014), 40–52.
-
(2014)
Biotechnol. Adv.
, vol.32
, pp. 40-52
-
-
Danquah, A.1
-
43
-
-
84855191673
-
Roles of mitogen-activated protein kinase cascades in ABA signaling
-
43 Liu, Y., Roles of mitogen-activated protein kinase cascades in ABA signaling. Plant Cell Rep. 31 (2012), 1–12.
-
(2012)
Plant Cell Rep.
, vol.31
, pp. 1-12
-
-
Liu, Y.1
-
44
-
-
0029810059
-
Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts
-
44 Knetsch, M.L.W., et al. Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8 (1996), 1061–1067.
-
(1996)
Plant Cell
, vol.8
, pp. 1061-1067
-
-
Knetsch, M.L.W.1
-
45
-
-
33745677488
-
Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants
-
45 Zhang, A., et al. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol. 141 (2006), 475–487.
-
(2006)
Plant Physiol.
, vol.141
, pp. 475-487
-
-
Zhang, A.1
-
46
-
-
0033955268
-
ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA
-
46 Burnett, E.C., ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J. Exp. Bot. 51 (2000), 197–205.
-
(2000)
J. Exp. Bot.
, vol.51
, pp. 197-205
-
-
Burnett, E.C.1
-
47
-
-
38349085002
-
The involvement of a P38-like MAP kinase in ABA-induced and H2O2-mediated stomatal closure in Vicia faba L
-
47 Jiang, J., et al. The involvement of a P38-like MAP kinase in ABA-induced and H2O2-mediated stomatal closure in Vicia faba L. Plant Cell Rep. 27 (2008), 377–385.
-
(2008)
Plant Cell Rep.
, vol.27
, pp. 377-385
-
-
Jiang, J.1
-
48
-
-
0034502592
-
Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6
-
48 Ichimura, K., et al. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24 (2000), 655–665.
-
(2000)
Plant J.
, vol.24
, pp. 655-665
-
-
Ichimura, K.1
-
49
-
-
84875458343
-
An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis
-
49 Montillet, J.-L., et al. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol., 11, 2013, e1001513.
-
(2013)
PLoS Biol.
, vol.11
, pp. e1001513
-
-
Montillet, J.-L.1
-
50
-
-
77954288995
-
The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression
-
50 Brock, A.K., et al. The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression. Plant Physiol. 153 (2010), 1098–1111.
-
(2010)
Plant Physiol.
, vol.153
, pp. 1098-1111
-
-
Brock, A.K.1
-
51
-
-
42549162252
-
AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis
-
51 Xing, Y., et al. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J. 54 (2008), 440–451.
-
(2008)
Plant J.
, vol.54
, pp. 440-451
-
-
Xing, Y.1
-
52
-
-
73949100728
-
MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling
-
52 Jammes, F., et al. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc. Natl. Acad. Sci. 106 (2009), 20520–20525.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, pp. 20520-20525
-
-
Jammes, F.1
-
53
-
-
34247099337
-
Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis
-
53 Ortiz-Masia, D., et al. Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett. 581 (2007), 1834–1840.
-
(2007)
FEBS Lett.
, vol.581
, pp. 1834-1840
-
-
Ortiz-Masia, D.1
-
54
-
-
84926506739
-
Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana
-
54 Danquah, A., et al. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J. 82 (2015), 232–244.
-
(2015)
Plant J.
, vol.82
, pp. 232-244
-
-
Danquah, A.1
-
55
-
-
33846917766
-
Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide
-
55 Gudesblat, G.E., et al. Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol. 173 (2007), 713–721.
-
(2007)
New Phytol.
, vol.173
, pp. 713-721
-
-
Gudesblat, G.E.1
-
56
-
-
34848825636
-
AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis
-
56 Xing, Y., et al. AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. J. Exp. Bot. 58 (2007), 2969–2981.
-
(2007)
J. Exp. Bot.
, vol.58
, pp. 2969-2981
-
-
Xing, Y.1
-
57
-
-
84925141381
-
Cautionary notes on the usage of abi1-2 and abi1-3 mutants of Arabidopsis ABI1 for functional studies
-
57 Wu, Y., et al. Cautionary notes on the usage of abi1-2 and abi1-3 mutants of Arabidopsis ABI1 for functional studies. Mol. Plant 8 (2015), 335–338.
-
(2015)
Mol. Plant
, vol.8
, pp. 335-338
-
-
Wu, Y.1
-
58
-
-
84860212089
-
Physiological genomics of response to soil drying in diverse Arabidopsis accessions
-
58 Des Marais, D.L., et al. Physiological genomics of response to soil drying in diverse Arabidopsis accessions. Plant Cell 24 (2012), 893–914.
-
(2012)
Plant Cell
, vol.24
, pp. 893-914
-
-
Des Marais, D.L.1
-
59
-
-
84866680967
-
MAP kinases, MPK9 and MPK12, regulate chitosan-induced stomatal closure
-
59 Salam, M.A., et al. MAP kinases, MPK9 and MPK12, regulate chitosan-induced stomatal closure. Biosci. Biotechnol. Biochem. 76 (2012), 1785–1787.
-
(2012)
Biosci. Biotechnol. Biochem.
, vol.76
, pp. 1785-1787
-
-
Salam, M.A.1
-
60
-
-
84938805982
-
Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana
-
60 Khokon, M.A.R., et al. Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana. Plant Biol. Stuttg. Ger. 17 (2015), 946–952.
-
(2015)
Plant Biol. Stuttg. Ger.
, vol.17
, pp. 946-952
-
-
Khokon, M.A.R.1
-
61
-
-
81255143978
-
Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response
-
61 Jammes, F., et al. Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signal. Behav. 6 (2011), 1875–1877.
-
(2011)
Plant Signal. Behav.
, vol.6
, pp. 1875-1877
-
-
Jammes, F.1
-
62
-
-
84929940895
-
Activation of AtMPK9 through autophosphorylation that makes it independent of the canonical MAPK cascades
-
62 Nagy, S.K., et al. Activation of AtMPK9 through autophosphorylation that makes it independent of the canonical MAPK cascades. Biochem. J. 467 (2015), 167–175.
-
(2015)
Biochem. J.
, vol.467
, pp. 167-175
-
-
Nagy, S.K.1
-
63
-
-
84930722917
-
An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity
-
63 Matsuoka, D., et al. An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity. Plant Mol. Biol. 87 (2015), 565–575.
-
(2015)
Plant Mol. Biol.
, vol.87
, pp. 565-575
-
-
Matsuoka, D.1
-
64
-
-
84952761552
-
Arabidopsis ABA-activated kinase MAPKKK18 is regulated by Protein Phosphatase 2C ABI1 and the ubiquitin-proteasome pathway
-
64 Mitula, F., et al. Arabidopsis ABA-activated kinase MAPKKK18 is regulated by Protein Phosphatase 2C ABI1 and the ubiquitin-proteasome pathway. Plant Cell Physiol. 56 (2015), 2351–2367.
-
(2015)
Plant Cell Physiol.
, vol.56
, pp. 2351-2367
-
-
Mitula, F.1
-
65
-
-
84953774881
-
Plant MAPK cascades: just rapid signaling modules?
-
65 Boudsocq, M., et al. Plant MAPK cascades: just rapid signaling modules?. Plant Signal. Behav., 10, 2015, e1062197.
-
(2015)
Plant Signal. Behav.
, vol.10
, pp. e1062197
-
-
Boudsocq, M.1
|