-
1
-
-
0000984411
-
Fractal growth
-
L. M. Sander, “Fractal growth,” Sci. Am. 256,94 (1987).
-
(1987)
Sci. Am.
, vol.256
, pp. 94
-
-
Sander, L.M.1
-
2
-
-
0000080147
-
Fractal growth processes
-
L. M. Sander, “Fractal growth processes,” Nature (London) 322,789 (1986).
-
(1986)
Nature (London)
, vol.322
, pp. 789
-
-
Sander, L.M.1
-
3
-
-
0000395880
-
Fractal growth of viscous fingers: Quantative characterization of a fluid instability phenomenon
-
J. Nittman, G. Daccord, and H. E. Stanley, “Fractal growth of viscous fingers: quantative characterization of a fluid instability phenomenon,” Nature (London) 314,141 (1985).
-
(1985)
Nature (London)
, vol.314
, pp. 141
-
-
Nittman, J.1
Daccord, G.2
Stanley, H.E.3
-
4
-
-
5344226395
-
Fractal dimension of dielectric breakdown
-
L. Niemeyer, L. Pietronero, and H. J. Wiesmann, “Fractal dimension of dielectric breakdown,” Phys. Rev. Lett. 52,1033 (1984).
-
(1984)
Phys. Rev. Lett.
, vol.52
, pp. 1033
-
-
Niemeyer, L.1
Pietronero, L.2
Wiesmann, H.J.3
-
5
-
-
0024225256
-
The statistical physics of sedimentary rock
-
P.-Z. Wong, “The statistical physics of sedimentary rock,” Phys. Today 41(12), 24 (1988).
-
(1988)
Phys. Today
, vol.41
, Issue.12
, pp. 24
-
-
Wong, P.-Z.1
-
8
-
-
4243632346
-
Diffusion limited aggregation, a kinetic critical phenomenon
-
T. A. Witten and L. M. Sander, “Diffusion limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47, 1400 (1981).
-
(1981)
Phys. Rev. Lett.
, vol.47
, pp. 1400
-
-
Witten, T.A.1
Sander, L.M.2
-
9
-
-
0022421231
-
Iterated function systems and the global construction of fractals
-
M. F. Barnsley and S. Demko, “Iterated function systems and the global construction of fractals,” Proc. R. Soc. London Ser. A 399,243 (1985).
-
(1985)
Proc. R. Soc. London Ser. A
, vol.399
, pp. 243
-
-
Barnsley, M.F.1
Demko, S.2
-
10
-
-
84975623810
-
On Growth and Form: Fractal and Non-Fractal Patterns in Physics (Nijhoff, Boston
-
H. E. Stanley and N. Ostrosky, On Growth and Form: Fractal and Non-Fractal Patterns in Physics (Nijhoff, Boston, Mass., 1986).
-
(1986)
Mass.
-
-
Stanley, H.E.1
Ostrosky, N.2
-
11
-
-
33744600737
-
Resource letter FR-1: Fractals
-
A. J. Hurd, “Resource letter FR-1: fractals,” Am. J. Phys. 56, 969 (1988).
-
(1988)
Am. J. Phys.
, vol.56
, pp. 969
-
-
Hurd, A.J.1
-
12
-
-
84957234051
-
Where is the physics of fractals
-
L. Kadanoff, “Where is the physics of fractals,” Phys. Today 39(2), 6 (1986).
-
(1986)
Phys. Today
, vol.39
, Issue.2
, pp. 6
-
-
Kadanoff, L.1
-
13
-
-
84975623821
-
Mathematics of dimension measurement for graphs of functions
-
B. B. Mandelbrot and D. E. Passoja, Materials Research Society, Pittsburgh, Pa
-
P. H. Carter, R. Cawley, and R. D. Mauldin, “Mathematics of dimension measurement for graphs of functions,” in Fractal Aspects of Materials, B. B. Mandelbrot and D. E. Passoja, eds. (Materials Research Society, Pittsburgh, Pa., 1985).
-
(1985)
Fractal Aspects of Materials
-
-
Carter, P.H.1
Cawley, R.2
Mauldin, R.D.3
-
14
-
-
0001655696
-
Evaluating the fractal dimension of profiles
-
B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, and S. W. Zucker, “Evaluating the fractal dimension of profiles,” Phys. Rev. A 39,1500 (1989).
-
(1989)
Phys. Rev. A
, vol.39
, pp. 1500
-
-
Dubuc, B.1
Quiniou, J.F.2
Roques-Carmes, C.3
Tricot, C.4
Zucker, S.W.5
-
17
-
-
0003478288
-
-
Springer Series in Applied Mathematical Sciences, Springer- Verlag, New York
-
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 of Springer Series in Applied Mathematical Sciences (Springer- Verlag, New York, 1983).
-
(1983)
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, vol.42
-
-
Guckenheimer, J.1
Holmes, P.2
-
18
-
-
84975607677
-
Global dynamical behavior of the optical field in a ring cavity
-
S. M. Hammel, C. K. R. T. Jones, and J. V. Moloney, “Global dynamical behavior of the optical field in a ring cavity,” J. Opt. Soc. Am. B 2, 552 (1985).
-
(1985)
J. Opt. Soc. Am. B
, vol.2
, pp. 552
-
-
Hammel, S.M.1
Jones, C.K.R.T.2
Moloney, J.V.3
-
19
-
-
0002591468
-
A two-dimensional mapping with a strange attractor
-
M. Henon, “A two-dimensional mapping with a strange attractor,” Commun. Math. Phys. 50,69 (1976).
-
(1976)
Commun. Math. Phys.
, vol.50
, pp. 69
-
-
Henon, M.1
-
20
-
-
0003986822
-
-
of Cambridge Tracts in Mathematics (Cambridge U. Press, Cambridge
-
K. J. Falconer, The Geometry of Fractal Sets, Vol. 85 of Cambridge Tracts in Mathematics (Cambridge U. Press, Cambridge, 1985).
-
(1985)
The Geometry of Fractal Sets
, vol.85
-
-
Falconer, K.J.1
-
21
-
-
35949018382
-
Ergodic theory of chaos and strange attractors
-
J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,” Rev. Mod. Phys. 57,617 (1985).
-
(1985)
Rev. Mod. Phys.
, vol.57
, pp. 617
-
-
Eckmann, J.-P.1
Ruelle, D.2
-
22
-
-
0008494528
-
Determining Lyapunov exponents from a time series
-
A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica 16D, 285 (1985).
-
(1985)
Physica
, vol.16D
, pp. 285
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
-
23
-
-
6444240297
-
Liapunov exponents from a time series
-
J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto, “Liapunov exponents from a time series,” Phys. Rev. A 34, 4971 (1986).
-
(1986)
Phys. Rev. A
, vol.34
, pp. 4971
-
-
Eckmann, J.-P.1
Kamphorst, S.O.2
Ruelle, D.3
Ciliberto, S.4
-
24
-
-
0001036423
-
Evaluation of Lyapunov exponents and scaling functions from time series
-
R. Stoop and P. F. Meier, “Evaluation of Lyapunov exponents and scaling functions from time series,” J. Opt. Soc. Am. B 5, 1037 (1988).
-
(1988)
J. Opt. Soc. Am. B
, vol.5
, pp. 1037
-
-
Stoop, R.1
Meier, P.F.2
-
25
-
-
4243243202
-
Estimation of the Kolmogorov entropy from a chaotic signal
-
P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A 28, 2591 (1983).
-
(1983)
Phys. Rev. A
, vol.28
, pp. 2591
-
-
Grassberger, P.1
Procaccia, I.2
-
26
-
-
0000842022
-
Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems
-
A. Cohen and I. Procaccia, “Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems,” Phys. Rev. A 31,1872 (1985).
-
(1985)
Phys. Rev. A
, vol.31
, pp. 1872
-
-
Cohen, A.1
Procaccia, I.2
-
27
-
-
0000289991
-
Fluctuations of dynamical scaling indices in nonlinear systems
-
J. P. Eckmann and I. Procaccia, “Fluctuations of dynamical scaling indices in nonlinear systems,” Phys. Rev. A 34, 659 (1986).
-
(1986)
Phys. Rev. A
, vol.34
, pp. 659
-
-
Eckmann, J.P.1
Procaccia, I.2
-
28
-
-
4243960896
-
Dynamical fractal properties of onedimensional maps
-
P. Szepfalusy and T. Tel, “Dynamical fractal properties of onedimensional maps,” Phys. Rev. A 35,477 (1987).
-
(1987)
Phys. Rev. A
, vol.35
, pp. 477
-
-
Szepfalusy, P.1
Tel, T.2
-
29
-
-
35949021230
-
Geometry from a time series
-
N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “Geometry from a time series,” Phys. Rev. Lett. 45,712 (1980).
-
(1980)
Phys. Rev. Lett.
, vol.45
, pp. 712
-
-
Packard, N.H.1
Crutchfield, J.P.2
Farmer, J.D.3
Shaw, R.S.4
-
30
-
-
0000779360
-
Detecting strange attractors in turbulence
-
D. A. Rand and L.-S. Young, eds, Springer Lecture Notes in MathematicsSpringer-Verlag, Berlin
-
F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick, 1980, D. A. Rand and L.-S. Young, eds., Vol. 898 of Springer Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1981), p. 366.
-
(1980)
Dynamical Systems and Turbulence, Warwick
, vol.898
, pp. 366
-
-
Takens, F.1
-
31
-
-
0003290175
-
On the dimension of the compact invariant sets of certain non-linear maps
-
D. A. Rand and L.-S. Young, eds., Vol. 898 of Springer Lecture Notes in Mathematics, Springer-Verlag, Berlin
-
R. Mane, “On the dimension of the compact invariant sets of certain non-linear maps,” in Dynamical Systems and Turbulence, Warwick, 1980, D. A. Rand and L.-S. Young, eds., Vol. 898 of Springer Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1981), p. 320.
-
(1980)
Dynamical Systems and Turbulence
, pp. 320
-
-
Mane, R.1
-
32
-
-
34548696055
-
Independent coordinates for strange attractors from mutual information
-
A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A 33, 1134 (1986).
-
(1986)
Phys. Rev. A
, vol.33
, pp. 1134
-
-
Fraser, A.M.1
Swinney, H.L.2
-
33
-
-
84975603728
-
Institut fur Theoretische Physik, Universitat Frankfurt, Frankfurt, Federal Republic of Germany
-
W. Liebert, K. Pawelzik, and H. G. Schuster, Institut fur Theoretische Physik, Universitat Frankfurt, Frankfurt, Federal Republic of Germany, “Optimal embeddings of chaotic attractors from topological considerations,” preprint (1989).
-
(1989)
Optimal Embeddings of Chaotic Attractors from Topological Considerations
-
-
Liebert, W.1
Pawelzik, K.2
Schuster, H.G.3
-
34
-
-
0022472327
-
Extracting qualitative dynamics from experimental data
-
D. S. Broomhead and G. P. King, “Extracting qualitative dynamics from experimental data,” Physica 20D, 217 (1986).
-
(1986)
Physica
, vol.20D
, pp. 217
-
-
Broomhead, D.S.1
King, G.P.2
-
35
-
-
0002438422
-
Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems
-
S. Sato, M. Sano, and Y. Sawada, “Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems,” Prog. Theor. Phys. 77,1 (1987).
-
(1987)
Prog. Theor. Phys.
, vol.77
, pp. 1
-
-
Sato, S.1
Sano, M.2
Sawada, Y.3
-
36
-
-
35949015106
-
Singular-value decomposition and embedding dimension
-
A. I. Mees, P. E. Rapp, and L. S. Jennings, “Singular-value decomposition and embedding dimension,” Phys. Rev. A 36, 340 (1987).
-
(1987)
Phys. Rev. A
, vol.36
, pp. 340
-
-
Mees, A.I.1
Rapp, P.E.2
Jennings, L.S.3
-
37
-
-
35949011725
-
Singular-value decomposition and the Grassberger- Procaccia algorithm
-
A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E. Rapp, “Singular-value decomposition and the Grassberger- Procaccia algorithm,” Phys. Rev. A 38,3017 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 3017
-
-
Albano, A.M.1
Muench, J.2
Schwartz, C.3
Mees, A.I.4
Rapp, P.E.5
-
38
-
-
0001628622
-
Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria
-
A. M. Fraser, “Reconstructing attractors from scalar time series: a comparison of singular system and redundancy criteria,” Physica 34D, 391 (1989).
-
(1989)
Physica
, vol.34D
, pp. 391
-
-
Fraser, A.M.1
-
40
-
-
0040537338
-
Exploiting chaos to predict the future and reduce noise
-
Learning and Cognition, Y. C. Lee, edWorld Scientific, Singapore
-
J. D. Farmer and J. J. Sidorowich, “Exploiting chaos to predict the future and reduce noise,” in Evolution, Learning and Cognition, Y. C. Lee, ed. (World Scientific, Singapore, 1988), p. 221.
-
(1988)
Evolution
, pp. 221
-
-
Farmer, J.D.1
Sidorowich, J.J.2
-
41
-
-
34250950477
-
Dimension und ausseres Mass
-
F. Hausdorff, “Dimension und ausseres Mass,” Math. Annalen 79,157 (1919).
-
(1919)
Math. Annalen
, vol.79
, pp. 157
-
-
Hausdorff, F.1
-
42
-
-
48749145669
-
The dimension of chaotic attractors
-
J. D. Farmer, E. Ott, and J. A. Yorke, “The dimension of chaotic attractors,” Physica 7D, 153 (1983).
-
(1983)
Physica
, vol.7D
, pp. 153
-
-
Farmer, J.D.1
Ott, E.2
Yorke, J.A.3
-
43
-
-
0346372923
-
The infinite number of generalized dimensions of fractals and strange attractors
-
H. G. E. Hentschel and I. Procaccia, “The infinite number of generalized dimensions of fractals and strange attractors,” Physica 8D, 435 (1983).
-
(1983)
Physica
, vol.8D
, pp. 435
-
-
Hentschel, H.G.E.1
Procaccia, I.2
-
44
-
-
48749149528
-
Generalized dimensions of strange attractors
-
P. Grassberger, “Generalized dimensions of strange attractors,” Phys. Lett. A 97, 227 (1983).
-
(1983)
Phys. Lett. A
, vol.97
, pp. 227
-
-
Grassberger, P.1
-
45
-
-
45949115280
-
Anomalous scaling laws in multifractal objects
-
G. Paladin and A. Vulpiani, “Anomalous scaling laws in multifractal objects,” Phys. Rep. 156,147 (1987).
-
(1987)
Phys. Rep.
, vol.156
, pp. 147
-
-
Paladin, G.1
Vulpiani, A.2
-
46
-
-
3342916075
-
Fractal measures and their singularities: The characterization of strange sets
-
T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. Shraiman, “Fractal measures and their singularities: the characterization of strange sets,” Phys. Rev. A 33,1141 (1986).
-
(1986)
Phys. Rev. A
, vol.33
, pp. 1141
-
-
Halsey, T.C.1
Jensen, M.H.2
Kadanoff, L.P.3
Procaccia, I.4
Shraiman, B.5
-
47
-
-
33645084116
-
Multifractal description of singular measures in dynamical systems
-
S. K. Sakar, “Multifractal description of singular measures in dynamical systems,” Phys. Rev. A 36,4104 (1987).
-
(1987)
Phys. Rev. A
, vol.36
, pp. 4104
-
-
Sakar, S.K.1
-
48
-
-
0001194019
-
Global universality at the onset of chaos: Results of a forced Rayleigh-Bernard experiment
-
M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia, and J. Stavans, “Global universality at the onset of chaos: results of a forced Rayleigh-Bernard experiment,” Phys. Rev. Lett. 55,27-98 (1985).
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 27-98
-
-
Jensen, M.H.1
Kadanoff, L.P.2
Libchaber, A.3
Procaccia, I.4
Stavans, J.5
-
49
-
-
11544249745
-
Scaling structure of attractors at the transition from quasiperiodicity to chaos in electronic transport in Ge
-
E. G. Gwinn and R. M. Westervelt, “Scaling structure of attractors at the transition from quasiperiodicity to chaos in electronic transport in Ge,” Phys. Rev. Lett. 59,157 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 157
-
-
Gwinn, E.G.1
Westervelt, R.M.2
-
50
-
-
4243571935
-
(A) curves: Experimental results
-
J. A. Glazier, G. Gunaratne, and A. Libchaber, “(a) curves: experimental results,” Phys. Rev. A 37,523 (1988).
-
(1988)
Phys. Rev. A
, vol.37
, pp. 523
-
-
Glazier, J.A.1
Gunaratne, G.2
Libchaber, A.3
-
51
-
-
0001035734
-
Time ordering and the thermodynamics of strange sets: Theory and experimental tests
-
M. J. Feigenbaum, M. H. Jensen, and I. Procaccia, “Time ordering and the thermodynamics of strange sets: theory and experimental tests,” Phys. Rev. Lett. 57,1503 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 1503
-
-
Feigenbaum, M.J.1
Jensen, M.H.2
Procaccia, I.3
-
52
-
-
35949014261
-
Phase transitions in the thermo dynamic formalism of multifractals
-
D. Katzen and I. Procaccia, “Phase transitions in the thermo dynamic formalism of multifractals,” Phys. Rev. Lett. 58,1169 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 1169
-
-
Katzen, D.1
Procaccia, I.2
-
53
-
-
24844453821
-
Scaling structure and thermodynamics of strange sets
-
M. H. Jensen, L. P. Kadanoff, and I. Procaccia, “Scaling structure and thermodynamics of strange sets,” Phys. Rev. A 36, 1409 (1987).
-
(1987)
Phys. Rev. A
, vol.36
, pp. 1409
-
-
Jensen, M.H.1
Kadanoff, L.P.2
Procaccia, I.3
-
54
-
-
35949008975
-
Order parameter, symmetry breaking, and phase transitions in the description of multifractal sets
-
T. Bohr and M. H. Jensen, “Order parameter, symmetry breaking, and phase transitions in the description of multifractal sets,” Phys. Rev. A 36,4904 (1987).
-
(1987)
Phys. Rev. A
, vol.36
, pp. 4904
-
-
Bohr, T.1
Jensen, M.H.2
-
56
-
-
34047261058
-
Impracti- cality of a box-counting algorithm for calculating the dimensionality of strange attractors
-
H. S. Greenside, A. Wolf, J. Swift, and T. Pignataro, “Impracti- cality of a box-counting algorithm for calculating the dimensionality of strange attractors,” Phys. Rev. A 25, 3453 (1982).
-
(1982)
Phys. Rev. A
, vol.25
, pp. 3453
-
-
Greenside, H.S.1
Wolf, A.2
Swift, J.3
Pignataro, T.4
-
57
-
-
34250093291
-
Scaling laws for invariant measures on hyperbolic and non-hyperbolic attractors
-
P. Grassberger, R. Badii, and A. Politi, “Scaling laws for invariant measures on hyperbolic and non-hyperbolic attractors,” J. Stat. Phys. 51,135 (1988).
-
(1988)
J. Stat. Phys.
, vol.51
, pp. 135
-
-
Grassberger, P.1
Badii, R.2
Politi, A.3
-
58
-
-
84975629729
-
-
P. Cvitanovic, G. H. Gunarante, and I. Procaccia, “Topological and metric properties of Henon-type strange attractors,” preprint (University of Chicago, Chicago, 111., 1988).
-
(1988)
Topological and Metric Properties of Henon-Type Strange Attractors
-
-
Cvitanovic, P.1
Gunarante, G.H.2
Procaccia, I.3
-
59
-
-
0002981158
-
Application of dimension algorithms to experimental chaos
-
Hao Bai-lin, ed. (World Scientific, Singapore
-
G. Mayer-Kress, “Application of dimension algorithms to experimental chaos,” in Directions in Chaos, Hao Bai-lin, ed. (World Scientific, Singapore, 1987), p. 122.
-
(1987)
Directions in Chaos
, pp. 122
-
-
Mayer-Kress, G.1
-
60
-
-
33646981873
-
Characterization of strange attractors
-
P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett. 50,346 (1983).
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 346
-
-
Grassberger, P.1
Procaccia, I.2
-
61
-
-
40749093037
-
Measuring the strangeness of strange attractors
-
P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica 9D, 189 (1983).
-
(1983)
Physica
, vol.9D
, pp. 189
-
-
Grassberger, P.1
Procaccia, I.2
-
62
-
-
0006223162
-
Invariants related to dimension and entropy
-
Coloqkio Brasiliero do Matematica, Rio de Janeiro
-
F. Takens, “Invariants related to dimension and entropy,” in Atas do 13° (Coloqkio Brasiliero do Matematica, Rio de Janeiro, 1983).
-
(1983)
Atas Do 13°
-
-
Takens, F.1
-
63
-
-
0000090102
-
Finite sample corrections to entropy and dimension estimates
-
P. Grassberger, “Finite sample corrections to entropy and dimension estimates,” Phys. Lett. A 128,369 (1988).
-
(1988)
Phys. Lett. A
, vol.128
, pp. 369
-
-
Grassberger, P.1
-
64
-
-
0001413326
-
Spurious dimension from correlation algorithms applied to limited time series data
-
J. Theiler, “Spurious dimension from correlation algorithms applied to limited time series data,” Phys. Rev. A 34, 2427 (1988).
-
(1988)
Phys. Rev. A
, vol.34
, pp. 2427
-
-
Theiler, J.1
-
65
-
-
4243245982
-
Generalized dimensions and entropies from a measured time series
-
K. Pawelzik and H. G. Schuster, “Generalized dimensions and entropies from a measured time series,” Phys. Rev. A 35,481 (1989).
-
(1989)
Phys. Rev. A
, vol.35
, pp. 481
-
-
Pawelzik, K.1
Schuster, H.G.2
-
66
-
-
0001397566
-
Global scaling properties of a chaotic attractor reconstructed from experimental data
-
H. Atmanspacher, H. Scheingraber, and W. Voges, “Global scaling properties of a chaotic attractor reconstructed from experimental data,” Phys. Rev. A 37,1314 (1988).
-
(1988)
Phys. Rev. A
, vol.37
, pp. 1314
-
-
Atmanspacher, H.1
Scheingraber, H.2
Voges, W.3
-
67
-
-
0002534246
-
Fractal dimension of strange attractors from radius versus
-
Y. Termonia and Z. Alexandrowicz, “Fractal dimension of strange attractors from radius versus,” Phys. Rev. Lett. 51, 1265 (1983).
-
(1983)
Phys. Rev. Lett.
, vol.51
, pp. 1265
-
-
Termonia, Y.1
Alexandrowicz, Z.2
-
68
-
-
0007857591
-
Dimension measurements for geostrophic turbulence
-
J. Guckenheimer and G. Buzyna, “Dimension measurements for geostrophic turbulence,” Phys. Rev. Lett. 51,1483 (1983).
-
(1983)
Phys. Rev. Lett.
, vol.51
, pp. 1483
-
-
Guckenheimer, J.1
Buzyna, G.2
-
69
-
-
0001463465
-
Statistical description of chaotic attractors: The dimension function
-
R. Badii and A. Politi, “Statistical description of chaotic attractors: the dimension function,” J. Stat. Phys. 40, 725 (1985).
-
(1985)
J. Stat. Phys.
, vol.40
, pp. 725
-
-
Badii, R.1
Politi, A.2
-
70
-
-
0000899534
-
Generalizations of the Hausdorff dimension of fractal measures
-
P. Grassberger, “Generalizations of the Hausdorff dimension of fractal measures,” Phys. Lett. A 107,101 (1985).
-
(1985)
Phys. Lett. A
, vol.107
, pp. 101
-
-
Grassberger, P.1
-
71
-
-
0040417803
-
Evaluation of dimensions and entropies of chaotic systems
-
G. Broggi, “Evaluation of dimensions and entropies of chaotic systems,” J. Opt. Soc. Am. B 5,1020 (1988).
-
(1988)
J. Opt. Soc. Am. B
, vol.5
, pp. 1020
-
-
Broggi, G.1
-
72
-
-
0347984964
-
Generalized dimensions from near-neighbor information
-
W. van de Water and P. Schram, “Generalized dimensions from near-neighbor information,” Phys. Rev. A 37, 3118 (1990).
-
(1990)
Phys. Rev. A
, vol.37
, pp. 3118
-
-
Van De Water, W.1
Schram, P.2
-
73
-
-
0000108371
-
Measurement of the dimension spectrum f(A): Fixed-mass approach
-
R. Badii and G. Broggi, “Measurement of the dimension spectrum f(a): fixed-mass approach,” Phys. Lett. A 131, 339 (1972).
-
(1972)
Phys. Lett. A
, vol.131
, pp. 339
-
-
Badii, R.1
Broggi, G.2
-
74
-
-
0018295624
-
An intrinsic dimensionality estimator from near neighbor information
-
K. W. Pettis, T. A. Bailey, A. K. Jain, and R. C. Dubes, “An intrinsic dimensionality estimator from near neighbor information,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1,25 (1979).
-
(1979)
IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1
, pp. 25
-
-
Pettis, K.W.1
Bailey, T.A.2
Jain, A.K.3
Dubes, R.C.4
-
75
-
-
0008098372
-
Methods for estimating the intrinsic dimensionality of high-dimensional point sets
-
G. Mayer-Kress, ed., Vol. 32 of Springer Series in Synergetics, Springer-Verlag, Berlin
-
R. L. Somorjai, “Methods for estimating the intrinsic dimensionality of high-dimensional point sets,” in Dimensions and Entropies in Chaotic Systems—Quantification of Complex Behavior, G. Mayer-Kress, ed., Vol. 32 of Springer Series in Synergetics (Springer-Verlag, Berlin, 1986), p. 137.
-
(1986)
Dimensions and Entropies in Chaotic Systems—Quantification of Complex Behavior
, pp. 137
-
-
Somorjai, R.L.1
-
76
-
-
0001640825
-
-
H. O. Peitgen and H. O. Walther, eds., Vol. 730 of Springer Lecture Notes in Mathematics, Springer-Verlag, Berlin
-
J. L. Kaplan and J. A. Yorke, in Functional Differential Equations and Approximations of Fixed Points, H. O. Peitgen and H. O. Walther, eds., Vol. 730 of Springer Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1979), p. 204.
-
(1979)
Functional Differential Equations and Approximations of Fixed Points
, pp. 204
-
-
Kaplan, J.L.1
Yorke, J.A.2
-
77
-
-
48749146954
-
The Liapunov dimension of strange attractors
-
P. Fredrickson, J. L. Kaplan, E. D. Yorke, and J. A. Yorke, “The Liapunov dimension of strange attractors,” J. Diff, Eq. 49,185 (1983).
-
(1983)
J. Diff, Eq.
, vol.49
, pp. 185
-
-
Fredrickson, P.1
Kaplan, J.L.2
Yorke, E.D.3
Yorke, J.A.4
-
78
-
-
49049134700
-
Chaotic attractors of an infinite dimensional dynamical system
-
J. D. Farmer, “Chaotic attractors of an infinite dimensional dynamical system,” Physica 4D, 366 (1982).
-
(1982)
Physica
, vol.4D
, pp. 366
-
-
Farmer, J.D.1
-
79
-
-
0001141458
-
Study of a high-dimensional chaotic attractor
-
K. Ikeda and K. Matsumoto, “Study of a high-dimensional chaotic attractor,” J. Stat. Phys. 44,955 (1986).
-
(1986)
J. Stat. Phys.
, vol.44
, pp. 955
-
-
Ikeda, K.1
Matsumoto, K.2
-
80
-
-
0000849090
-
Renyi dimensions from local expansion rates
-
R. Badii and A. Politi, “Renyi dimensions from local expansion rates,” Phys. Rev. A 35,1288 (1987).
-
(1987)
Phys. Rev. A
, vol.35
, pp. 1288
-
-
Badii, R.1
Politi, A.2
-
81
-
-
0000965724
-
Exploring chaotic motion through periodic orbits
-
D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Gunarante, and I. Procaccia, “Exploring chaotic motion through periodic orbits,” Phys. Rev. Lett. 58,2387 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 2387
-
-
Auerbach, D.1
Cvitanovic, P.2
Eckmann, J.-P.3
Gunarante, G.4
Procaccia, I.5
-
83
-
-
0000905784
-
Scaling structure of strange attractors
-
D. Auerbach, B. O’Shaughnessy, and I. Procaccia, “Scaling structure of strange attractors,” Phys. Rev. A 37, 2234 (1988).
-
(1988)
Phys. Rev. A
, vol.37
, pp. 2234
-
-
Auerbach, D.1
O’Shaughnessy, B.2
Procaccia, I.3
-
84
-
-
0000112048
-
Unstable periodic orbits and the dimension of chaotic attractors
-
C. Grebogi, E. Ott, and J. A. Yorke, “Unstable periodic orbits and the dimension of chaotic attractors,” Phys. Rev. A 36,3522 (1988).
-
(1988)
Phys. Rev. A
, vol.36
, pp. 3522
-
-
Grebogi, C.1
Ott, E.2
Yorke, J.A.3
-
85
-
-
29444438680
-
Unstable periodic orbits and the dimensions of multifractal chaotic attractors
-
C. Grebogi, E. Ott, and J. A. Yorke, “Unstable periodic orbits and the dimensions of multifractal chaotic attractors,” Phys. Rev. A 37,1711 (1988).
-
(1988)
Phys. Rev. A
, vol.37
, pp. 1711
-
-
Grebogi, C.1
Ott, E.2
Yorke, J.A.3
-
86
-
-
0015011520
-
An algorithm for finding intrinsic dimensionality of data
-
K. Fukunaga and D. R. Olsen, “An algorithm for finding intrinsic dimensionality of data,” IEEE Trans. Comput. C-20,176 (1971).
-
(1971)
IEEE Trans. Comput. C-20
, pp. 176
-
-
Fukunaga, K.1
Olsen, D.R.2
-
87
-
-
0000229679
-
On determining the dimension of chaotic flows
-
H. Froehling, J. P. Crutchfield, D. Farmer, N. H. Packard, and R. Shaw, “On determining the dimension of chaotic flows,” Physica 3D, 605 (1981).
-
(1981)
Physica
, vol.3D
, pp. 605
-
-
Froehling, H.1
Crutchfield, J.P.2
Farmer, D.3
Packard, N.H.4
Shaw, R.5
-
88
-
-
0000416890
-
Topological dimension and local coordinates from time series data
-
D. S. Broomhead, R. Jones, and G. P. King, “Topological dimension and local coordinates from time series data,” J. Phys. A 20, L563 (1987).
-
(1987)
J. Phys. A
, vol.20
, pp. L563
-
-
Broomhead, D.S.1
Jones, R.2
King, G.P.3
-
89
-
-
0010116420
-
Estimation of the number of degrees of freedom from chaotic time series
-
A. Cenys and K. Pyragas, “Estimation of the number of degrees of freedom from chaotic time series,” Phys. Lett. A 129, 227 (1988).
-
(1988)
Phys. Lett. A
, vol.129
, pp. 227
-
-
Cenys, A.1
Pyragas, K.2
-
90
-
-
0000366598
-
Fractal dimension and local intrinsic dimension
-
A. Passamante, T. Hediger, and M. Gollub, “Fractal dimension and local intrinsic dimension,” Phys. Rev. A 39,3640 (1989).
-
(1989)
Phys. Rev. A
, vol.39
, pp. 3640
-
-
Passamante, A.1
Hediger, T.2
Gollub, M.3
-
91
-
-
0003621624
-
-
University of Wisconsin, Madison, Wise
-
W. A. Brock, W. D. Dechert, and J. A. Scheinkman, “A test for independence based on the correlation dimension,” preprint SSRI8702 (University of Wisconsin, Madison, Wise., 1987).
-
(1987)
A Test for Independence Based on the Correlation Dimension
-
-
Brock, W.A.1
Dechert, W.D.2
Scheinkman, J.A.3
-
92
-
-
0342563998
-
An electronic technique for measuring phase space dimension from chaotic time series
-
A. Namajunas, J. Pozzela, and A. Tamasevicius, “An electronic technique for measuring phase space dimension from chaotic time series,” Phys. Lett. A 131,85 (1988).
-
(1988)
Phys. Lett. A
, vol.131
, pp. 85
-
-
Namajunas, A.1
Pozzela, J.2
Tamasevicius, A.3
-
93
-
-
0001503799
-
A comparative study of the experimental quantification of deterministic chaos
-
A. Destexhe, J. A. Sepulchre, and A. Babloyantz, “A comparative study of the experimental quantification of deterministic chaos,” Phys. Lett. A 132,101 (1988).
-
(1988)
Phys. Lett. A
, vol.132
, pp. 101
-
-
Destexhe, A.1
Sepulchre, J.A.2
Babloyantz, A.3
-
95
-
-
0000099030
-
Dimension of strange attractors
-
D. A. Russell, J. D. Hanson, and E. Ott, “Dimension of strange attractors,” Phys. Rev. Lett. 45,1175 (1980).
-
(1980)
Phys. Rev. Lett.
, vol.45
, pp. 1175
-
-
Russell, D.A.1
Hanson, J.D.2
Ott, E.3
-
96
-
-
35748939493
-
On the fractal dimension of the Henon attractor
-
P. Grassberger, “On the fractal dimension of the Henon attractor,” Phys. Lett. A 97,224 (1983).
-
(1983)
Phys. Lett. A
, vol.97
, pp. 224
-
-
Grassberger, P.1
-
97
-
-
46549094446
-
A computation of the limit capacity of the Lorenz attractor
-
M. J. McGuinness, “A computation of the limit capacity of the Lorenz attractor,” Physica 16D, 265 (1985).
-
(1985)
Physica
, vol.16D
, pp. 265
-
-
McGuinness, M.J.1
-
98
-
-
84909815156
-
Invisible errors in dimension calculations: Geometric and systematic effects
-
G. Mayer-Kress, ed., Vol. 32 of Springer Series in Synergetics, Springer-Verlag, Berlin
-
W. E. Caswell and J. A. Yorke, “Invisible errors in dimension calculations: geometric and systematic effects,” in Dimensions and Entropies in Chaotic Systems—Quantification of Complex Behavior, G. Mayer-Kress, ed., Vol. 32 of Springer Series in Synergetics (Springer-Verlag, Berlin, 1986), p. 123.
-
(1986)
Dimensions and Entropies in Chaotic Systems—Quantification of Complex Behavior
, pp. 123
-
-
Caswell, W.E.1
Yorke, J.A.2
-
99
-
-
35949010692
-
Direct determination of the f(A) singularity spectrum
-
A. Chhabra and R. V. Jensen, “Direct determination of the f(a) singularity spectrum,” Phys. Rev. Lett. 69,1327 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.69
, pp. 1327
-
-
Chhabra, A.1
Jensen, R.V.2
-
100
-
-
0002405786
-
On the numerical determination of the dimension of an attractor
-
B. L. J. Braaksma, H. W. Broer, and F. Takens, eds., Vol. 1125 of Lecture Notes in Mathematics, Springer- Verlag, Berlin, 1985
-
F. Takens, “On the numerical determination of the dimension of an attractor,” in Dynamical Systems and Bifurcations, Groningen, 1984, B. L. J. Braaksma, H. W. Broer, and F. Takens, eds., Vol. 1125 of Lecture Notes in Mathematics (Springer- Verlag, Berlin, 1985).
-
(1984)
Dynamical Systems and Bifurcations
-
-
Takens, F.1
-
103
-
-
0041789449
-
Maximum likelihood method for evaluating correlation dimension
-
Y. S. Kim and W. W. Zachary, eds., Vol. 278 of Lecture Notes in Physics, Springer-Verlag, Berlin
-
R. Cawley and A. L. Licht, “Maximum likelihood method for evaluating correlation dimension,” in The Physics of Phase Space, Y. S. Kim and W. W. Zachary, eds., Vol. 278 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), p. 90.
-
(1986)
The Physics of Phase Space
, pp. 90
-
-
Cawley, R.1
Licht, A.L.2
-
104
-
-
0000592333
-
Estimating attractor dimensions for limited data: A new method, with error estimates
-
S. Ellner, “Estimating attractor dimensions for limited data: a new method, with error estimates,” Phys. Lett. A 113,128 (1988).
-
(1988)
Phys. Lett. A
, vol.113
, pp. 128
-
-
Ellner, S.1
-
105
-
-
0000419983
-
Lacunarity in a best estimator of fractal dimension
-
J. Theiler, “Lacunarity in a best estimator of fractal dimension,” Phys. Lett. A 133,195 (1988).
-
(1988)
Phys. Lett. A
, vol.133
, pp. 195
-
-
Theiler, J.1
-
106
-
-
0000818930
-
Efficient algorithm for estimating the correlation dimension from a set of discrete points
-
J. Theiler, “Efficient algorithm for estimating the correlation dimension from a set of discrete points,” Phys. Rev. A 36,4456 (1987).
-
(1987)
Phys. Rev. A
, vol.36
, pp. 4456
-
-
Theiler, J.1
-
107
-
-
0000712818
-
Multidimensional trees, range searching, and a correlation dimension algorithm of reduced complexity
-
S. Bingham and M. Kot, “Multidimensional trees, range searching, and a correlation dimension algorithm of reduced complexity,” Phys. Lett. A 140,327 (1989).
-
(1989)
Phys. Lett. A
, vol.140
, pp. 327
-
-
Bingham, S.1
Kot, M.2
-
108
-
-
0004088074
-
Efficient algorithms for computing fractal dimensions
-
G. Mayer- Kress, ed., Vol. 32 of Springer Series in Synergetics, Springer- Verlag, Berlin
-
F. Hunt and F. Sullivan, “Efficient algorithms for computing fractal dimensions,” in Dimensions and Entropies in Chaotic Systems—Quantification of Complex Behavior, G. Mayer- Kress, ed., Vol. 32 of Springer Series in Synergetics (Springer- Verlag, Berlin, 1986), p. 74.
-
(1986)
Dimensions and Entropies in Chaotic Systems—Quantification of Complex Behavior
, pp. 74
-
-
Hunt, F.1
Sullivan, F.2
-
109
-
-
35949010136
-
Optimized algorithm for the calculation of correlation integrals
-
M. Franaszek, “Optimized algorithm for the calculation of correlation integrals,” Phys. Rev. A 39,5540 (1989).
-
(1989)
Phys. Rev. A
, vol.39
, pp. 5540
-
-
Franaszek, M.1
-
110
-
-
4244022230
-
An optical technique for measuring fractal dimensions of planar Poincare maps
-
C.-K. Moon and F. C. Moon, “An optical technique for measuring fractal dimensions of planar Poincare maps,” Phys. Lett. A 114, 222 (1986).
-
(1986)
Phys. Lett. A
, vol.114
, pp. 222
-
-
Moon, C.-K.1
Moon, F.C.2
-
111
-
-
0022855557
-
Do climatic attractors exist?
-
P. Grassberger, “Do climatic attractors exist?” Nature (London) 323,609 (1986).
-
(1986)
Nature (London)
, vol.323
, pp. 609
-
-
Grassberger, P.1
-
112
-
-
5544310124
-
Finite correlation dimension for stochastic systems with power-law spectra
-
A. R. Osborne and A. Provenzale, “Finite correlation dimension for stochastic systems with power-law spectra,” Physica 35D, 357 (1989).
-
(1989)
Physica
, vol.35D
, pp. 357
-
-
Osborne, A.R.1
Provenzale, A.2
-
113
-
-
22244456151
-
Strange attractors in weakly turbulent Couette-Taylor flow
-
A. Brandstater and H. L. Swinney, “Strange attractors in weakly turbulent Couette-Taylor flow,” Phys. Rev. A 35,2207(1987).
-
(1987)
Phys. Rev. A
, vol.35
, pp. 2207
-
-
Brandstater, A.1
Swinney, H.L.2
-
114
-
-
34047202018
-
Calculating the dimension of attractors from small data sets
-
N. B. Abraham, A. M. Albano, B. Das, G. DeGuzman, S. Young, R. S. Gioggia, G. P. Puccioni, and J. R. Tredicce, “Calculating the dimension of attractors from small data sets,” Phys. Lett. A 114,217 (1986).
-
(1986)
Phys. Lett. A
, vol.114
, pp. 217
-
-
Abraham, N.B.1
Albano, A.M.2
Das, B.3
Deguzman, G.4
Young, S.5
Gioggia, R.S.6
Puccioni, G.P.7
Tredicce, J.R.8
-
115
-
-
0000116240
-
Attractor dimension of nonstationary dynamical systems from small data sets
-
J. W. Havstad and C. L. Ehlers, “Attractor dimension of nonstationary dynamical systems from small data sets,” Phys. Rev. A 39,845 (1989).
-
(1989)
Phys. Rev. A
, vol.39
, pp. 845
-
-
Havstad, J.W.1
Ehlers, C.L.2
-
116
-
-
0007345003
-
Bias and error bars in dimension calculations and their evaluation in some simple models
-
J. B. Ramsey and H.-J. Yuan, “Bias and error bars in dimension calculations and their evaluation in some simple models,” Phys. Lett. A 134, 287 (1989).
-
(1989)
Phys. Lett. A
, vol.134
, pp. 287
-
-
Ramsey, J.B.1
Yuan, H.-J.2
-
117
-
-
0000357105
-
Dimension increase in filtered chaotic signals
-
R. Badii, G. Broggi, B. Derighetti, M. Ravani, S. Ciliberto, A. Politi, and M. A. Rubio, “Dimension increase in filtered chaotic signals,” Phys. Rev. Lett. 60,979 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 979
-
-
Badii, R.1
Broggi, G.2
Derighetti, B.3
Ravani, M.4
Ciliberto, S.5
Politi, A.6
Rubio, M.A.7
-
118
-
-
0001524715
-
Measuring filtered chaotic signals
-
F. Mitschke, M. Moller, and W. Lange, “Measuring filtered chaotic signals,” Phys. Rev. A 37,4518 (1988).
-
(1988)
Phys. Rev. A
, vol.37
, pp. 4518
-
-
Mitschke, F.1
Moller, M.2
Lange, W.3
-
119
-
-
0000621736
-
Noise reduction in dynamical systems
-
E. J. Kostelich and J. A. Yorke, “Noise reduction in dynamical systems,” Phys. Rev. A 38,1649 (1988).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 1649
-
-
Kostelich, E.J.1
Yorke, J.A.2
-
120
-
-
6844242720
-
Errors from digitizing and noise in estimating attractor dimensions
-
M. Moller, W. Lange, F. Mitschke, N. B. Abraham, and U. Hubner, “Errors from digitizing and noise in estimating attractor dimensions,” Phys. Lett. A 138,176 (1989).
-
(1989)
Phys. Lett. A
, vol.138
, pp. 176
-
-
Moller, M.1
Lange, W.2
Mitschke, F.3
Abraham, N.B.4
Hubner, U.5
-
121
-
-
0000201862
-
Intrinsic limits on dimension calculations
-
L. A. Smith, “Intrinsic limits on dimension calculations,” Phys. Lett. A 133, 283 (1988).
-
(1988)
Phys. Lett. A
, vol.133
, pp. 283
-
-
Smith, L.A.1
-
123
-
-
0002886065
-
Correlations et texture dans un nouveau module dunivers hierarchise, base sur les ensembles tremas
-
B. B. Mandlebrot, “Correlations et texture dans un nouveau module d’univers hierarchise, base sur les ensembles tremas,” C. R. Acad. Sci. A 288,81 (1979).
-
(1979)
C. R. Acad. Sci. A
, vol.288
, pp. 81
-
-
Mandlebrot, B.B.1
-
124
-
-
0000439894
-
Geometric implementation of hypercubic lattices with noninteger dimension
-
Y. Gefen, Y. Meir, A. Aharony, and B. B. Mandelbrot, “Geometric implementation of hypercubic lattices with noninteger dimension,” Phys. Rev. Lett. 50,145 (1983).
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 145
-
-
Gefen, Y.1
Meir, Y.2
Aharony, A.3
Mandelbrot, B.B.4
-
125
-
-
0000241121
-
Phase transitions on fractals: III. Infinitely ramified lattices
-
Y. Gefen, A. Aharony, and B. B. Mandelbrot, “Phase transitions on fractals: III. Infinitely ramified lattices,” J. Phys. A 17,1277 (1984).
-
(1984)
J. Phys. A
, vol.17
, pp. 1277
-
-
Gefen, Y.1
Aharony, A.2
Mandelbrot, B.B.3
-
126
-
-
0000491376
-
Intrinsic oscillations in measuring the fractal dimensions
-
R. Badii and A. Politi, “Intrinsic oscillations in measuring the fractal dimensions,” Phys. Lett. A 104,303 (1984).
-
(1984)
Phys. Lett. A
, vol.104
, pp. 303
-
-
Badii, R.1
Politi, A.2
-
127
-
-
0000341746
-
Lacunarity and intermittency in fluid turbulence
-
L. A. Smith, J.-D. Fournier, and E. A. Spiegel, “Lacunarity and intermittency in fluid turbulence,” Phys. Lett. A 114, 465 (1986).
-
(1986)
Phys. Lett. A
, vol.114
, pp. 465
-
-
Smith, L.A.1
Fournier, J.-D.2
Spiegel, E.A.3
-
128
-
-
0000133395
-
Fractal dimensions and f(A) spectrum of the Henon attractor
-
A. Arneodo, G. Grasseau, and E. J. Kostelich, “Fractal dimensions and f(a) spectrum of the Henon attractor,” Phys. Lett. A 124,426 (1987).
-
(1987)
Phys. Lett. A
, vol.124
, pp. 426
-
-
Arneodo, A.1
Grasseau, G.2
Kostelich, E.J.3
-
129
-
-
0040124334
-
Mellin transforms of correlation integrals and generalized dimension of strange sets
-
D. Bessis, J.-D. Fournier, G. Servizi, G. Turchetti, and S. Vaienti, “Mellin transforms of correlation integrals and generalized dimension of strange sets,” Phys. Rev. A 36,20 (1987).
-
(1987)
Phys. Rev. A
, vol.36
, pp. 20
-
-
Bessis, D.1
Fournier, J.-D.2
Servizi, G.3
Turchetti, G.4
Vaienti, S.5
-
130
-
-
0002615297
-
Determination de dimension dattracteurs pour differents ecoule- ments
-
P. Atten, J. G. Caputo, B. Malraison, and Y. Gagne, “Determination de dimension d’attracteurs pour differents ecoule- ments,” J. Mec. Theor. Appl. 133 (Suppl.) (1984).
-
(1984)
J. Mec. Theor. Appl.
, vol.133
-
-
Atten, P.1
Caputo, J.G.2
Malraison, B.3
Gagne, Y.4
-
134
-
-
84939735258
-
Chaos: A tutorial for engineers
-
T. S. Parker and L. O. Chua, “Chaos: a tutorial for engineers,” Proc. IEEE 75,982 (1987).
-
(1987)
Proc. IEEE
, vol.75
, pp. 982
-
-
Parker, T.S.1
Chua, L.O.2
-
136
-
-
0022889049
-
Definitions of chaos and measuring its characteristics
-
J. Chros- towski and N. B. Abraham, eds. Proc. Soc. Photo-Opt. Instrum. Eng
-
N. B. Abraham, A. M. Albano, B. Das, T. Mello, M. F. H. Tarroja, N. Tufillaro, and R. S. Gioggia, “Definitions of chaos and measuring its characteristics,” in Optical Chaos, J. Chros- towski and N. B. Abraham, eds. Proc. Soc. Photo-Opt. Instrum. Eng. 667, 2 (1986).
-
(1986)
Optical Chaos
, vol.667
, Issue.2
-
-
Abraham, N.B.1
Albano, A.M.2
Das, B.3
Mello, T.4
Tarroja, M.F.H.5
Tufillaro, N.6
Gioggia, R.S.7
-
137
-
-
0009520409
-
Strange attractors, chaotic behavior, and information flow
-
R. S. Shaw, “Strange attractors, chaotic behavior, and information flow,” Z. Naturforsch. 36a, 80 (1981).
-
(1981)
Z. Naturforsch.
, vol.36
, pp. 80
-
-
Shaw, R.S.1
-
138
-
-
0003066261
-
Chaos
-
J. P. Crutchfield, J. D. Farmer, N. H. Packard, and R. Shaw, “Chaos,” Sci. Am. 255,46 (1986).
-
(1986)
Sci. Am.
, vol.255
, pp. 46
-
-
Crutchfield, J.P.1
Farmer, J.D.2
Packard, N.H.3
Shaw, R.4
-
139
-
-
35949021570
-
Strange attractors and chaotic motions of dynamical systems
-
E. Ott, “Strange attractors and chaotic motions of dynamical systems,” Rev. Mod. Phys. 53,655 (1981).
-
(1981)
Rev. Mod. Phys.
, vol.53
, pp. 655
-
-
Ott, E.1
-
140
-
-
0003569092
-
-
Princeton U. Press, Princeton, N.J
-
A. V. Holden, ed., Chaos (Princeton U. Press, Princeton, N.J., 1986).
-
(1986)
Chaos
-
-
Holden, A.V.1
-
142
-
-
0009061163
-
-
World Scientific, Singapore
-
H. Bai-Lin, Chaos (World Scientific, Singapore, 1984).
-
(1984)
Chaos
-
-
Bai-Lin, H.1
-
144
-
-
0041131374
-
Estimating the fractal dimensions and entropies of strange attractors
-
A. V. Holden, ed.Princeton U. Press, Princeton, N.J, Chap. 14
-
P. Grassberger, “Estimating the fractal dimensions and entropies of strange attractors,” in Chaos, A. V. Holden, ed. (Princeton U. Press, Princeton, N.J. 1986), Chap. 14.
-
(1986)
Chaos
-
-
Grassberger, P.1
-
146
-
-
0000918861
-
Testing nonlinear dynamics
-
N. B. Abraham, J. P. Gollub, and H. L. Swinney, “Testing nonlinear dynamics,” Physica 11D, 252 (1984).
-
(1984)
Physica
, vol.11
, pp. 252
-
-
Abraham, N.B.1
Gollub, J.P.2
Swinney, H.L.3
|