-
1
-
-
84934916291
-
Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting
-
Zou, X. X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting Chem. Soc. Rev. 2015, 44, 5148-5180 10.1039/C4CS00448E
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 5148-5180
-
-
Zou, X.X.1
Zhang, Y.2
-
2
-
-
84954028289
-
Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting
-
Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting Adv. Mater. 2016, 28, 215-230 10.1002/adma.201502696
-
(2016)
Adv. Mater.
, vol.28
, pp. 215-230
-
-
Wang, J.H.1
Cui, W.2
Liu, Q.3
Xing, Z.C.4
Asiri, A.M.5
Sun, X.P.6
-
3
-
-
84902163333
-
Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction
-
Yan, Y.; Xia, B. Y.; Xu, Z. C.; Wang, X. Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction ACS Catal. 2014, 4, 1693-1705 10.1021/cs500070x
-
(2014)
ACS Catal.
, vol.4
, pp. 1693-1705
-
-
Yan, Y.1
Xia, B.Y.2
Xu, Z.C.3
Wang, X.4
-
4
-
-
84957557410
-
Core-Shell Nanocomposites Based on Gold Nanoparticle@Zinc-Iron-Embedded Porous Carbons Derived from Metal-Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions
-
Lu, J.; Zhou, W. J.; Wang, L. K.; Jia, J.; Ke, Y. T.; Yang, L. J.; Zhou, K.; Liu, X. J.; Tang, Z. H.; Li, L. G. et al. Core-Shell Nanocomposites Based on Gold Nanoparticle@Zinc-Iron-Embedded Porous Carbons Derived from Metal-Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions ACS Catal. 2016, 6, 1045-1053 10.1021/acscatal.5b02302
-
(2016)
ACS Catal.
, vol.6
, pp. 1045-1053
-
-
Lu, J.1
Zhou, W.J.2
Wang, L.K.3
Jia, J.4
Ke, Y.T.5
Yang, L.J.6
Zhou, K.7
Liu, X.J.8
Tang, Z.H.9
Li, L.G.10
-
5
-
-
84959267413
-
Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction
-
Nguyen, T. P.; Choi, S.; Jeon, J. M.; Kwon, K. C.; Jang, H. W.; Kim, S. Y. Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction J. Phys. Chem. C 2016, 120, 3929-3935 10.1021/acs.jpcc.5b12164
-
(2016)
J. Phys. Chem. C
, vol.120
, pp. 3929-3935
-
-
Nguyen, T.P.1
Choi, S.2
Jeon, J.M.3
Kwon, K.C.4
Jang, H.W.5
Kim, S.Y.6
-
6
-
-
84956669330
-
2 Electrocatalyst Support for Hydrogen Evolution Reaction
-
2 Electrocatalyst Support for Hydrogen Evolution Reaction J. Phys. Chem. C 2016, 120, 1478-1487 10.1021/acs.jpcc.5b09523
-
(2016)
J. Phys. Chem. C
, vol.120
, pp. 1478-1487
-
-
Li, Z.Z.1
Dai, X.P.2
Du, K.L.3
Ma, Y.D.4
Liu, M.Z.5
Sun, H.6
Ma, X.Y.7
Zhang, X.8
-
7
-
-
79955891162
-
2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction
-
2 Nanoparticles Grown on Graphene: an Advanced Catalyst for the Hydrogen Evolution Reaction J. Am. Chem. Soc. 2011, 133, 7296-7299 10.1021/ja201269b
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 7296-7299
-
-
Li, Y.1
Wang, H.2
Xie, L.3
Liang, Y.4
Hong, G.5
Dai, H.J.6
-
8
-
-
84933557865
-
2-MoN/Carbonitride Composites Derived from Tetrathiomolybdate/Polymer Hybrids
-
2-MoN/Carbonitride Composites Derived from Tetrathiomolybdate/Polymer Hybrids Chem. Eng. Sci. 2015, 134, 572-580 10.1016/j.ces.2015.05.065
-
(2015)
Chem. Eng. Sci.
, vol.134
, pp. 572-580
-
-
Dai, X.P.1
Du, K.L.2
Li, Z.Z.3
Sun, H.4
Yang, Y.5
Zhang, X.6
Li, X.S.7
Wang, H.8
-
9
-
-
84947070247
-
2 Nanowire Arrays on Carbon Cloth as Three-Dimensional Electrodes for Efficient Electrocatalytic Hydrogen Evolution
-
2 Nanowire Arrays on Carbon Cloth as Three-Dimensional Electrodes for Efficient Electrocatalytic Hydrogen Evolution J. Mater. Chem. A 2015, 3, 22886-22891 10.1039/C5TA07234D
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 22886-22891
-
-
Huang, J.L.1
Hou, D.M.2
Zhou, Y.C.3
Zhou, W.J.4
Li, G.Q.5
Tang, Z.H.6
Li, L.G.7
Chen, S.W.8
-
10
-
-
84937731461
-
2 Nanosheets-Coated Functionalized Carbon Nanotubes
-
2 Nanosheets-Coated Functionalized Carbon Nanotubes Int. J. Hydrogen Energy 2015, 40, 8877-8888 10.1016/j.ijhydene.2015.05.062
-
(2015)
Int. J. Hydrogen Energy
, vol.40
, pp. 8877-8888
-
-
Dai, X.P.1
Du, K.L.2
Li, Z.Z.3
Sun, H.4
Yang, Y.5
Zhang, W.6
Zhang, X.7
-
11
-
-
84903703206
-
2 Nanosheets as Effective Electrocatalysts for Hydrogen Evolution Reaction
-
2 Nanosheets as Effective Electrocatalysts for Hydrogen Evolution Reaction J. Mater. Chem. A 2014, 2, 11358-11364 10.1039/c4ta01898b
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 11358-11364
-
-
Zhou, W.J.1
Hou, D.M.2
Sang, Y.H.3
Yao, S.H.4
Zhou, J.5
Li, G.Q.6
Li, L.G.7
Liu, H.8
Chen, S.W.9
-
12
-
-
84960079744
-
2/Carbon Nanosheets for Efficient Electrocatalytic Hydrogen Evolution
-
2/Carbon Nanosheets for Efficient Electrocatalytic Hydrogen Evolution Nano Energy 2016, 22, 490-498 10.1016/j.nanoen.2016.02.056
-
(2016)
Nano Energy
, vol.22
, pp. 490-498
-
-
Yang, L.J.1
Zhou, W.J.2
Lu, J.3
Hou, D.M.4
Ke, Y.T.5
Li, G.Q.6
Tang, Z.H.7
Kang, X.W.8
Chen, S.W.9
-
13
-
-
84868370135
-
Template-Free Pseudomorphic Synthesis of Tungsten Carbide Nanorods
-
Yan, Y.; Zhang, L.; Qi, X.; Song, H.; Wang, J.; Zhang, H.; Wang, X. Template-Free Pseudomorphic Synthesis of Tungsten Carbide Nanorods Small 2012, 8, 3350-3356 10.1002/smll.201200877
-
(2012)
Small
, vol.8
, pp. 3350-3356
-
-
Yan, Y.1
Zhang, L.2
Qi, X.3
Song, H.4
Wang, J.5
Zhang, H.6
Wang, X.7
-
14
-
-
84902293445
-
Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction
-
Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction Angew. Chem., Int. Ed. 2014, 53, 6407-6410 10.1002/anie.201402998
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 6407-6410
-
-
Wan, C.1
Regmi, Y.N.2
Leonard, B.M.3
-
15
-
-
84904570870
-
Molybdenum Phosphide as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction
-
Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J.-Y.; Lim, K. H.; Wang, X. Molybdenum Phosphide as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction Energy Environ. Sci. 2014, 7, 2624-2629 10.1039/C4EE00957F
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2624-2629
-
-
Xiao, P.1
Sk, M.A.2
Thia, L.3
Ge, X.4
Lim, R.J.5
Wang, J.-Y.6
Lim, K.H.7
Wang, X.8
-
16
-
-
84891288161
-
Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction
-
Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction J. Am. Chem. Soc. 2013, 135, 19186-19192 10.1021/ja4081056
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 19186-19192
-
-
Cao, B.F.1
Veith, G.M.2
Neuefeind, J.C.3
Adzic, R.R.4
Khalifah, P.G.5
-
17
-
-
17644368513
-
2 Nanoparticles as Catalyst for Hydrogen Evolution
-
2 Nanoparticles as Catalyst for Hydrogen Evolution J. Am. Chem. Soc. 2005, 127, 5308-5309 10.1021/ja0504690
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 5308-5309
-
-
Hinnemann, J.B.1
Moses, P.G.2
Bonde, J.3
Jørgensen, K.P.4
Nielsen, J.H.5
Horch, S.6
Chorkendorff, I.7
Nørskov, J.K.8
-
18
-
-
34447326950
-
2 Nanocatalysts
-
2 Nanocatalysts Science 2007, 317, 100-102 10.1126/science.1141483
-
(2007)
Science
, vol.317
, pp. 100-102
-
-
Jaramillo, T.F.1
Jørgensen, K.P.2
Bonde, J.3
Nielsen, J.H.4
Horch, S.5
Chorkendorff, I.6
-
19
-
-
57049156528
-
4+ Electrocatalysts
-
4+ Electrocatalysts J. Phys. Chem. C 2008, 112, 17492-17498 10.1021/jp802695e
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 17492-17498
-
-
Jaramillo, T.F.1
Bonde, J.2
Zhang, J.D.3
Ooi, B.L.4
Andersson, K.5
Ulstrup, J.6
Chorkendorff, I.7
-
21
-
-
84902197232
-
x Copolymer Films as a Highly Active Hydrogen Evolution Electrocatalyst
-
x Copolymer Films as a Highly Active Hydrogen Evolution Electrocatalyst Adv. Mater. 2014, 26, 3761-3766 10.1002/adma.201400265
-
(2014)
Adv. Mater.
, vol.26
, pp. 3761-3766
-
-
Wang, T.Y.1
Zhuo, J.Q.2
Du, K.Z.3
Chen, B.B.4
Zhu, Z.W.5
Shao, Y.H.6
Li, M.X.7
-
22
-
-
79959454526
-
Amorphous Molybdenum Sulfide Films as Catalysts for Electrochemical Hydrogen Production in Water
-
Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L. Amorphous Molybdenum Sulfide Films as Catalysts for Electrochemical Hydrogen Production in Water Chem. Sci. 2011, 2, 1262-1267 10.1039/C1SC00117E
-
(2011)
Chem. Sci.
, vol.2
, pp. 1262-1267
-
-
Merki, D.1
Fierro, S.2
Vrubel, H.3
Hu, X.L.4
-
23
-
-
84873335713
-
x Grown on Graphene-Protected 3D Ni Foams
-
x Grown on Graphene-Protected 3D Ni Foams Adv. Mater. 2013, 25, 756-760 10.1002/adma.201202920
-
(2013)
Adv. Mater.
, vol.25
, pp. 756-760
-
-
Chang, Y.H.1
Lin, C.T.2
Chen, T.Y.3
Hsu, C.L.4
Lee, Y.H.5
Zhang, W.J.6
Wei, K.H.7
Li, L.J.8
-
24
-
-
84883886591
-
Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst
-
Vrubel, H.; Hu, X. L. Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst ACS Catal. 2013, 3, 2002-2011 10.1021/cs400441u
-
(2013)
ACS Catal.
, vol.3
, pp. 2002-2011
-
-
Vrubel, H.1
Hu, X.L.2
-
25
-
-
84863012270
-
Hydrogen-Evolution Catalysts, Molybdenum Mimic
-
Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. Hydrogen-Evolution Catalysts, Molybdenum Mimic Science 2012, 335, 698-702 10.1126/science.1215868
-
(2012)
Science
, vol.335
, pp. 698-702
-
-
Karunadasa, H.I.1
Montalvo, E.2
Sun, Y.J.3
Majda, M.4
Long, J.R.5
Chang, C.J.6
-
26
-
-
24744468030
-
Molybdenum-Sulfur Dimers as Electrocatalysts for the Production of Hydrogen at Low Overpotentials
-
Appel, A. M.; DuBois, D. L.; DuBois, M. R. Molybdenum-Sulfur Dimers as Electrocatalysts for the Production of Hydrogen at Low Overpotentials J. Am. Chem. Soc. 2005, 127, 12717-12726 10.1021/ja054034o
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 12717-12726
-
-
Appel, A.M.1
DuBois, D.L.2
DuBois, M.R.3
-
28
-
-
67749137433
-
Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal-Organic Framework Materials
-
Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T. Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal-Organic Framework Materials J. Am. Chem. Soc. 2009, 131, 458-460 10.1021/ja808853q
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 458-460
-
-
Nelson, A.P.1
Farha, O.K.2
Mulfort, K.L.3
Hupp, J.T.4
-
29
-
-
84907652828
-
Catalysis by Metal-Organic Frameworks in Water
-
Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Catalysis by Metal-Organic Frameworks in Water Chem. Commun. 2014, 50, 12800-12814 10.1039/C4CC04387A
-
(2014)
Chem. Commun.
, vol.50
, pp. 12800-12814
-
-
Dhakshinamoorthy, A.1
Asiri, A.M.2
Garcia, H.3
-
30
-
-
84940064424
-
Metal-Organic Frameworks: Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations
-
Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal-Organic Frameworks: Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations Chem. Soc. Rev. 2015, 44, 6804-6849 10.1039/C4CS00395K
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 6804-6849
-
-
Chughtai, A.H.1
Ahmad, N.2
Younus, H.A.3
Laypkov, A.4
Verpoort, F.5
-
31
-
-
84863012686
-
Introduction to Metal-Organic Frameworks
-
Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to Metal-Organic Frameworks Chem. Rev. 2012, 112, 673-674 10.1021/cr300014x
-
(2012)
Chem. Rev.
, vol.112
, pp. 673-674
-
-
Zhou, H.C.1
Long, J.R.2
Yaghi, O.M.3
-
32
-
-
84908243010
-
Water Stability and Adsorption in Metal-Organic Frameworks
-
Burtch, N. C.; Jasuja, H.; Walton, K. S. Water Stability and Adsorption in Metal-Organic Frameworks Chem. Rev. 2014, 114, 10575-10612 10.1021/cr5002589
-
(2014)
Chem. Rev.
, vol.114
, pp. 10575-10612
-
-
Burtch, N.C.1
Jasuja, H.2
Walton, K.S.3
-
33
-
-
84861622715
-
Electrocatalytic Four-Electron Reduction of Oxygen with Copper (II)-Based Metal-Organic Frameworks
-
Mao, J. J.; Yang, L. F.; Yu, P.; Wei, X. W.; Mao, L. Q. Electrocatalytic Four-Electron Reduction of Oxygen with Copper (II)-Based Metal-Organic Frameworks Electrochem. Commun. 2012, 19, 29-31 10.1016/j.elecom.2012.02.025
-
(2012)
Electrochem. Commun.
, vol.19
, pp. 29-31
-
-
Mao, J.J.1
Yang, L.F.2
Yu, P.3
Wei, X.W.4
Mao, L.Q.5
-
34
-
-
84860013277
-
Electrocatalytically Active Graphene-Porphyrin MOF Composite for Oxygen Reduction Reaction
-
Jahan, M.; Bao, Q. L.; Loh, K. P. Electrocatalytically Active Graphene-Porphyrin MOF Composite for Oxygen Reduction Reaction J. Am. Chem. Soc. 2012, 134, 6707-6713 10.1021/ja211433h
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 6707-6713
-
-
Jahan, M.1
Bao, Q.L.2
Loh, K.P.3
-
35
-
-
84935885333
-
Ultrastable Polymolybdate-Based Metal-Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water
-
Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. Ultrastable Polymolybdate-Based Metal-Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water J. Am. Chem. Soc. 2015, 137, 7169-7177 10.1021/jacs.5b02688
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 7169-7177
-
-
Qin, J.S.1
Du, D.Y.2
Guan, W.3
Bo, X.J.4
Li, Y.F.5
Guo, L.P.6
Su, Z.M.7
Wang, Y.Y.8
Lan, Y.Q.9
Zhou, H.C.10
-
36
-
-
84941629526
-
A Porous Proton-Relaying Metal-Organic Framework Material that Accelerates Electrochemical Hydrogen Evolution
-
Hod, I.; Deria, P.; Bury, W.; Mondloch, J. E.; Kung, C. W.; So, M.; Sampson, M. D.; Peters, A. W.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. A Porous Proton-Relaying Metal-Organic Framework Material that Accelerates Electrochemical Hydrogen Evolution Nat. Commun. 2015, 6, 8304 10.1038/ncomms9304
-
(2015)
Nat. Commun.
, vol.6
, pp. 8304
-
-
Hod, I.1
Deria, P.2
Bury, W.3
Mondloch, J.E.4
Kung, C.W.5
So, M.6
Sampson, M.D.7
Peters, A.W.8
Kubiak, C.P.9
Farha, O.K.10
Hupp, J.T.11
-
37
-
-
84887848710
-
A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR
-
Jahan, M.; Liu, Z. L.; Loh, K. P. A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR Adv. Funct. Mater. 2013, 23, 5363-5372 10.1002/adfm.201300510
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 5363-5372
-
-
Jahan, M.1
Liu, Z.L.2
Loh, K.P.3
-
38
-
-
84866981618
-
Highly Selective Electrochemical Reduction of Carbon Dioxide Using Cu Based Metal Organic Framework as an Electrocatalyst
-
Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A. Highly Selective Electrochemical Reduction of Carbon Dioxide Using Cu Based Metal Organic Framework as an Electrocatalyst Electrochem. Commun. 2012, 25, 70-73 10.1016/j.elecom.2012.09.018
-
(2012)
Electrochem. Commun.
, vol.25
, pp. 70-73
-
-
Kumar, R.S.1
Kumar, S.S.2
Kulandainathan, M.A.3
-
39
-
-
84947436493
-
Metal-Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide
-
Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal-Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide J. Am. Chem. Soc. 2015, 137, 14129-14135 10.1021/jacs.5b08212
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 14129-14135
-
-
Kornienko, N.1
Zhao, Y.B.2
Kley, C.S.3
Zhu, C.H.4
Kim, D.5
Lin, S.6
Chang, C.J.7
Yaghi, O.M.8
Yang, P.D.9
-
40
-
-
84880181856
-
Metal-Organic Frameworks as Heterogeneous Catalysts for Electrocatalytic Oxidative Carbonylation of Methanol to Dimethyl Carbonate
-
Jia, G.; Gao, Y. F.; Zhang, W.; Wang, H.; Cao, Z. Z.; Li, C. H.; Liu, J. R. Metal-Organic Frameworks as Heterogeneous Catalysts for Electrocatalytic Oxidative Carbonylation of Methanol to Dimethyl Carbonate Electrochem. Commun. 2013, 34, 211-214 10.1016/j.elecom.2013.06.013
-
(2013)
Electrochem. Commun.
, vol.34
, pp. 211-214
-
-
Jia, G.1
Gao, Y.F.2
Zhang, W.3
Wang, H.4
Cao, Z.Z.5
Li, C.H.6
Liu, J.R.7
-
41
-
-
77954857081
-
A metal-Organic Framework as an Electrocatalyst for Ethanol Oxidation
-
Yang, L. F.; Kinoshita, S.; Yamada, T.; Kanda, S.; Kitagawa, H.; Tokunaga, M.; Ishimoto, T.; Ogura, T.; Nagumo, R.; Miyamoto, A. et al. A metal-Organic Framework as an Electrocatalyst for Ethanol Oxidation Angew. Chem., Int. Ed. 2010, 49, 5348-5351 10.1002/anie.201000863
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 5348-5351
-
-
Yang, L.F.1
Kinoshita, S.2
Yamada, T.3
Kanda, S.4
Kitagawa, H.5
Tokunaga, M.6
Ishimoto, T.7
Ogura, T.8
Nagumo, R.9
Miyamoto, A.10
-
43
-
-
84922496345
-
Stability of UiO-66 under Acidic Treatment: Opportunities and Limitations for Post-Synthetic Modifications
-
Piscopo, C. G.; Polyzoidis, A.; Schwarzer, M.; Loebbecke, S. Stability of UiO-66 under Acidic Treatment: Opportunities and Limitations for Post-Synthetic Modifications Microporous Mesoporous Mater. 2015, 208, 30-35 10.1016/j.micromeso.2015.01.032
-
(2015)
Microporous Mesoporous Mater.
, vol.208
, pp. 30-35
-
-
Piscopo, C.G.1
Polyzoidis, A.2
Schwarzer, M.3
Loebbecke, S.4
-
44
-
-
84879532435
-
4 Secondary Building Unit
-
4 Secondary Building Unit J. Mater. Chem. A 2013, 1, 5642-5650 10.1039/c3ta10662d
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 5642-5650
-
-
DeCoste, J.B.1
Peterson, G.W.2
Jasuja, H.3
Glover, T.G.4
Huang, Y.5
Walton, K.S.6
-
45
-
-
54249103593
-
A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability
-
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability J. Am. Chem. Soc. 2008, 130, 13850-13851 10.1021/ja8057953
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 13850-13851
-
-
Cavka, J.H.1
Jakobsen, S.2
Olsbye, U.3
Guillou, N.4
Lamberti, C.5
Bordiga, S.6
Lillerud, K.P.7
-
46
-
-
84900801380
-
Metal-Organic Framework@Microporous Organic Network: Hydrophobic Adsorbents with a Crystalline inner Porosity
-
Chun, J.; Kang, S.; Park, N.; Park, E. J.; Jin, X.; Kim, K. D.; Seo, H. O.; Lee, S. M.; Kim, H. J.; Kwon, W. H. et al. Metal-Organic Framework@Microporous Organic Network: Hydrophobic Adsorbents with a Crystalline inner Porosity J. Am. Chem. Soc. 2014, 136, 6786-6789 10.1021/ja500362w
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 6786-6789
-
-
Chun, J.1
Kang, S.2
Park, N.3
Park, E.J.4
Jin, X.5
Kim, K.D.6
Seo, H.O.7
Lee, S.M.8
Kim, H.J.9
Kwon, W.H.10
-
47
-
-
84874643448
-
Proton Conduction in Metal-Organic Frameworks and Related Modularly Built Porous Solids
-
Yoon, M.; Suh, K.; Natarajan, S.; Kim, K. Proton Conduction in Metal-Organic Frameworks and Related Modularly Built Porous Solids Angew. Chem., Int. Ed. 2013, 52, 2688-2700 10.1002/anie.201206410
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 2688-2700
-
-
Yoon, M.1
Suh, K.2
Natarajan, S.3
Kim, K.4
-
48
-
-
70749133666
-
Metal-Organic Frameworks: Transported into Fuel Cells
-
Kitagawa, H. Metal-Organic Frameworks: Transported into Fuel Cells Nat. Chem. 2009, 1, 689-690 10.1038/nchem.454
-
(2009)
Nat. Chem.
, vol.1
, pp. 689-690
-
-
Kitagawa, H.1
-
49
-
-
84868107457
-
6 (UiO-66)
-
6 (UiO-66) Dalton Trans. 2012, 41, 13791-13794 10.1039/c2dt31195j
-
(2012)
Dalton Trans.
, vol.41
, pp. 13791-13794
-
-
Foo, M.L.1
Horike, S.2
Fukushima, T.3
Hijikata, Y.4
Kubota, Y.5
Takata, M.6
Kitagawa, S.7
-
50
-
-
79958100804
-
Sulfation of Metal-Organic Frameworks: Opportunities for Acid Catalysis and Proton Conductivity
-
Goesten, M. G.; Juan-Alcañiz, J.; Ramos-Fernandez, E. V.; Gupta, K. B. S. S.; Stavitski, E.; van Bekkum, H.; Gascon, J.; Kapteijn, F. Sulfation of Metal-Organic Frameworks: Opportunities for Acid Catalysis and Proton Conductivity J. Catal. 2011, 281, 177-187 10.1016/j.jcat.2011.04.015
-
(2011)
J. Catal.
, vol.281
, pp. 177-187
-
-
Goesten, M.G.1
Juan-Alcañiz, J.2
Ramos-Fernandez, E.V.3
Gupta, K.B.S.S.4
Stavitski, E.5
Van Bekkum, H.6
Gascon, J.7
Kapteijn, F.8
-
51
-
-
84927722973
-
Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation
-
Phang, W. J.; Jo, H.; Lee, W. R.; Song, J. H.; Yoo, K.; Kim, B.; Hong, C. S. Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation Angew. Chem., Int. Ed. 2015, 54, 5142-5146 10.1002/anie.201411703
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 5142-5146
-
-
Phang, W.J.1
Jo, H.2
Lee, W.R.3
Song, J.H.4
Yoo, K.5
Kim, B.6
Hong, C.S.7
-
52
-
-
78650435580
-
Synthesis and Stability of Tagged UiO-66 Zr-MOFs
-
Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs Chem. Mater. 2010, 22, 6632-6640 10.1021/cm102601v
-
(2010)
Chem. Mater.
, vol.22
, pp. 6632-6640
-
-
Kandiah, M.1
Nilsen, M.H.2
Usseglio, S.3
Jakobsen, S.4
Olsbye, U.5
Tilset, M.6
Larabi, C.7
Quadrelli, E.A.8
Bonino, F.9
Lillerud, K.P.10
-
53
-
-
84880372807
-
2 Nanosheets
-
2 Nanosheets J. Am. Chem. Soc. 2013, 135, 10274-10277 10.1021/ja404523s
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10274-10277
-
-
Lukowski, M.A.1
Daniel, A.S.2
Meng, F.3
Forticaux, A.4
Li, L.S.5
Jin, S.6
-
54
-
-
84929593858
-
A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs
-
Hu, Z. G.; Peng, Y. W.; Kang, Z. X.; Qian, Y. H.; Zhao, D. A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs Inorg. Chem. 2015, 54, 4862-4868 10.1021/acs.inorgchem.5b00435
-
(2015)
Inorg. Chem.
, vol.54
, pp. 4862-4868
-
-
Hu, Z.G.1
Peng, Y.W.2
Kang, Z.X.3
Qian, Y.H.4
Zhao, D.5
-
55
-
-
85027925905
-
3H-Functionalized UiO-66 Metal-Organic Framework by Postsynthetic Modification and Studies of Its Catalytic Activities
-
3H-Functionalized UiO-66 Metal-Organic Framework by Postsynthetic Modification and Studies of Its Catalytic Activities Eur. J. Inorg. Chem. 2014, 2014, 4268-4272 10.1002/ejic.201402509
-
(2014)
Eur. J. Inorg. Chem.
, vol.2014
, pp. 4268-4272
-
-
Luan, Y.1
Zheng, N.2
Qi, Y.3
Yu, J.4
Wang, G.5
-
56
-
-
84887769490
-
Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal-Organic Framework
-
Pullen, S.; Fei, H. H.; Orthaber, A.; Cohen, S. M.; Ott, S. Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal-Organic Framework J. Am. Chem. Soc. 2013, 135, 16997-167003 10.1021/ja407176p
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 16997-167003
-
-
Pullen, S.1
Fei, H.H.2
Orthaber, A.3
Cohen, S.M.4
Ott, S.5
-
57
-
-
84923360496
-
Improving Photocatalytic Hydrogen Production of Metal-Organic Framework UiO-66 Octahedrons by Dye-Sensitization
-
Yuan, Y. P.; Yin, L. S.; Cao, S. W.; Xu, G. S.; Li, C. H.; Xue, C. Improving Photocatalytic Hydrogen Production of Metal-Organic Framework UiO-66 Octahedrons by Dye-Sensitization Appl. Catal., B 2015, 168-169, 572-576 10.1016/j.apcatb.2014.11.007
-
(2015)
Appl. Catal., B
, vol.168-169
, pp. 572-576
-
-
Yuan, Y.P.1
Yin, L.S.2
Cao, S.W.3
Xu, G.S.4
Li, C.H.5
Xue, C.6
-
58
-
-
84955174540
-
2 Nanosheets Embedded in a Carbon Matrix with an Excellent Supercapacitor Electrode Performance
-
2 Nanosheets Embedded in a Carbon Matrix with an Excellent Supercapacitor Electrode Performance Small 2015, 11, 6480-6490 10.1002/smll.201502355
-
(2015)
Small
, vol.11
, pp. 6480-6490
-
-
Ji, H.M.1
Liu, C.2
Wang, T.3
Chen, J.4
Mao, Z.N.5
Zhao, J.6
Hou, W.H.7
Yang, G.8
-
59
-
-
84938941522
-
Synthesis of Mesoporous and Tetragonal Zirconia with Inherited Morphology from Metal-Organic Frameworks
-
Yan, X. L.; Lu, N. Y.; Fan, B. B.; Bao, J. H.; Pan, D. H.; Wang, M. J.; Li, R. F. Synthesis of Mesoporous and Tetragonal Zirconia with Inherited Morphology from Metal-Organic Frameworks CrystEngComm 2015, 17, 6426-6433 10.1039/C5CE00960J
-
(2015)
CrystEngComm
, vol.17
, pp. 6426-6433
-
-
Yan, X.L.1
Lu, N.Y.2
Fan, B.B.3
Bao, J.H.4
Pan, D.H.5
Wang, M.J.6
Li, R.F.7
-
61
-
-
84866130770
-
Fe, Co, and Ni Ions Promote the Catalytic Activity of Amorphous Molybdenum Sulfide Films for Hydrogen Evolution
-
Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni Ions Promote the Catalytic Activity of Amorphous Molybdenum Sulfide Films for Hydrogen Evolution Chem. Sci. 2012, 3, 2515-2525 10.1039/c2sc20539d
-
(2012)
Chem. Sci.
, vol.3
, pp. 2515-2525
-
-
Merki, D.1
Vrubel, H.2
Rovelli, L.3
Fierro, S.4
Hu, X.L.5
-
62
-
-
84873869620
-
3/Carbon Nanotube Nanocomposite with High Catalytic Activity toward Hydrogen Evolution Reaction
-
3/Carbon Nanotube Nanocomposite with High Catalytic Activity toward Hydrogen Evolution Reaction Appl. Catal., B 2013, 134-135, 75-82 10.1016/j.apcatb.2013.01.004
-
(2013)
Appl. Catal., B
, vol.134-135
, pp. 75-82
-
-
Lin, T.W.1
Liu, C.J.2
Lin, J.Y.3
-
63
-
-
84930226694
-
2 Monolayer by Covalent Functionalization
-
2 Monolayer by Covalent Functionalization Chem. Mater. 2015, 27, 3743-3748 10.1021/acs.chemmater.5b00986
-
(2015)
Chem. Mater.
, vol.27
, pp. 3743-3748
-
-
Tang, Q.1
Jiang, D.E.2
-
64
-
-
84866103921
-
Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity
-
Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity ACS Catal. 2012, 2, 1916-1923 10.1021/cs300451q
-
(2012)
ACS Catal.
, vol.2
, pp. 1916-1923
-
-
Benck, J.D.1
Chen, Z.B.2
Kuritzky, L.Y.3
Forman, A.J.4
Jaramillo, T.F.5
-
65
-
-
84946121341
-
2 Nanosheets in Nanoporous Carbon Derived from Metal-Organic Frameworks for Efficient Hydrogen Production
-
2 Nanosheets in Nanoporous Carbon Derived from Metal-Organic Frameworks for Efficient Hydrogen Production Nanoscale 2015, 7, 18004-18009 10.1039/C5NR03810C
-
(2015)
Nanoscale
, vol.7
, pp. 18004-18009
-
-
Liu, Y.1
Zhou, X.L.2
Ding, T.3
Wang, C.D.4
Yang, Q.5
-
66
-
-
84886513913
-
Highly Efficient Electrocatalytic Hydrogen Production by Nickel Promoted Molybdenum Sulfide Microspheres Catalysts
-
Lv, X. J.; She, G. W.; Zhou, S. X.; Li, Y. M. Highly Efficient Electrocatalytic Hydrogen Production by Nickel Promoted Molybdenum Sulfide Microspheres Catalysts RSC Adv. 2013, 3, 21231-21236 10.1039/c3ra42340a
-
(2013)
RSC Adv.
, vol.3
, pp. 21231-21236
-
-
Lv, X.J.1
She, G.W.2
Zhou, S.X.3
Li, Y.M.4
-
67
-
-
84898937056
-
Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at all pH Values
-
Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at all pH Values Angew. Chem., Int. Ed. 2014, 53, 4372-4376 10.1002/anie.201311111
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 4372-4376
-
-
Zou, X.X.1
Huang, X.X.2
Goswami, A.3
Silva, R.4
Sathe, B.R.5
Mikmeková, E.6
Asefa, T.7
-
68
-
-
84882730767
-
Enhancement of Hydrogen Evolution Reaction on Platinum Cathode by Proton Carriers
-
Cretu, R.; Kellenberger, A.; Vaszilcsin, N. Enhancement of Hydrogen Evolution Reaction on Platinum Cathode by Proton Carriers Int. J. Hydrogen Energy 2013, 38, 11685-11694 10.1016/j.ijhydene.2013.07.004
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, pp. 11685-11694
-
-
Cretu, R.1
Kellenberger, A.2
Vaszilcsin, N.3
-
69
-
-
84866715758
-
Imparting High Proton Conductivity to a Metal-Organic Framework Material by Controlled Acid Impregnation
-
Ponomareva, V. G.; Kovalenko, K. A.; Chupakhin, A. P.; Dybtsev, D. N.; Shutova, E. S.; Fedin, V. P. Imparting High Proton Conductivity to a Metal-Organic Framework Material by Controlled Acid Impregnation J. Am. Chem. Soc. 2012, 134, 15640-15643 10.1021/ja305587n
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 15640-15643
-
-
Ponomareva, V.G.1
Kovalenko, K.A.2
Chupakhin, A.P.3
Dybtsev, D.N.4
Shutova, E.S.5
Fedin, V.P.6
-
70
-
-
84948657500
-
Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses
-
Yang, F.; Huang, H. L.; Wang, X. Y.; Li, F.; Gong, Y. H.; Zhong, C. L.; Li, J. R. Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses Cryst. Growth Des. 2015, 15, 5827-5833 10.1021/acs.cgd.5b01190
-
(2015)
Cryst. Growth Des.
, vol.15
, pp. 5827-5833
-
-
Yang, F.1
Huang, H.L.2
Wang, X.Y.3
Li, F.4
Gong, Y.H.5
Zhong, C.L.6
Li, J.R.7
-
71
-
-
84976253117
-
Proton Transport in a Highly Conductive Porous Zirconium-Based Metal-Organic Framework: Molecular Insight
-
Borges, D. D.; Devautour-Vinot, S.; Jobic, H.; Ollivier, J.; Nouar, F.; Semino, R.; Devic, T.; Serre, C.; Paesani, F.; Maurin, G. Proton Transport in a Highly Conductive Porous Zirconium-Based Metal-Organic Framework: Molecular Insight Angew. Chem. 2016, 128, 3987-3992 10.1002/ange.201510855
-
(2016)
Angew. Chem.
, vol.128
, pp. 3987-3992
-
-
Borges, D.D.1
Devautour-Vinot, S.2
Jobic, H.3
Ollivier, J.4
Nouar, F.5
Semino, R.6
Devic, T.7
Serre, C.8
Paesani, F.9
Maurin, G.10
-
72
-
-
84929224818
-
Electric Transport Properties of Surface-Anchored Metal-Organic Frameworks and the Effect of Ferrocene Loading
-
Liu, J. X.; Wachter, T.; Irmler, A.; Weidler, P. G.; Gliemann, H.; Pauly, F.; Mugnaini, V.; Zharnikov, M.; Wöll, C. Electric Transport Properties of Surface-Anchored Metal-Organic Frameworks and the Effect of Ferrocene Loading ACS Appl. Mater. Interfaces 2015, 7, 9824-9830 10.1021/acsami.5b01792
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 9824-9830
-
-
Liu, J.X.1
Wachter, T.2
Irmler, A.3
Weidler, P.G.4
Gliemann, H.5
Pauly, F.6
Mugnaini, V.7
Zharnikov, M.8
Wöll, C.9
-
73
-
-
84950266603
-
2 Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution
-
2 Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution ACS Appl. Mater. Interfaces 2015, 7, 27242-27253 10.1021/acsami.5b08420
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 27242-27253
-
-
Dai, X.1
Du, K.2
Li, Z.3
Liu, M.4
Ma, Y.5
Sun, H.6
Zhang, X.7
Yang, Y.8
|