-
1
-
-
0346304911
-
Nanotubes from carbon
-
P.M.Ajayan, 1999. Nanotubes from carbon. Chemical Reviews 99 (7):1787–800.
-
(1999)
Chemical Reviews
, vol.99
, Issue.7
, pp. 1787-1800
-
-
Ajayan, P.M.1
-
2
-
-
84897958320
-
Application of capacitive deionisation in water desalination: A review
-
F.A.AlMarzooqi,, A.A.AlGhaferi, I.Saadat, and N.Hilal. 2014. Application of capacitive deionisation in water desalination: A review. Desalination 342:3–15. doi:10.1016/j.desal.2014.02.031
-
(2014)
Desalination
, vol.342
, pp. 3-15
-
-
AlMarzooqi, F.A.1
AlGhaferi, A.A.2
Saadat, I.3
Hilal, N.4
-
3
-
-
77950041562
-
Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?
-
M.A.Anderson,, A.L.Cudero, and J.Palma. 2010. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 55:3845–56. doi:10.1016/j.electacta.2010.02.012
-
(2010)
Electrochimica Acta
, vol.55
, pp. 3845-3856
-
-
Anderson, M.A.1
Cudero, A.L.2
Palma, J.3
-
4
-
-
84881614876
-
Comment on “Carbon nanotube/graphene composite for enhanced capacitive deionization performance” by Y. Wimalasiri and L. Zou
-
P.M.Biesheuvel,, S.Porada, and V.Presser. 2013. Comment on “Carbon nanotube/graphene composite for enhanced capacitive deionization performance” by Y. Wimalasiri and L. Zou. Carbon 63:574–75. doi:10.1016/j.carbon.2013.06.088
-
(2013)
Carbon
, vol.63
, pp. 574-575
-
-
Biesheuvel, P.M.1
Porada, S.2
Presser, V.3
-
5
-
-
17844376480
-
NaCl adsorption in multi-walled carbon nanotubes
-
K.Dai,, L.Shi, J.Fang, D.Zhang, and B.Yu. 2005. NaCl adsorption in multi-walled carbon nanotubes. Materials Letters 59:1989–92. doi:10.1016/j.matlet.2005.01.042
-
(2005)
Materials Letters
, vol.59
, pp. 1989-1992
-
-
Dai, K.1
Shi, L.2
Fang, J.3
Zhang, D.4
Yu, B.5
-
6
-
-
84899132337
-
2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology
-
2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 344:289–98. doi:10.1016/j.desal.2014.03.028
-
(2014)
Desalination
, vol.344
, pp. 289-298
-
-
El-Deen, A.G.1
Barakat, N.A.M.2
Kim, H.Y.3
-
9
-
-
79961214184
-
The future of seawater desalination: Energy, technology, and the environment
-
M.Elimelech,, and W.A.Phillip. 2011. The future of seawater desalination: Energy, technology, and the environment. Science 333:712–17. doi:10.1126/science.1200488
-
(2011)
Science
, vol.333
, pp. 712-717
-
-
Elimelech, M.1
Phillip, W.A.2
-
10
-
-
84875807812
-
A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions
-
C.J.Feng,, C.Hou, S.H.Chen, and C.P.Yu. 2013. A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions. Chemosphere 91 (5):623–28. doi:10.1016/j.chemosphere.2012.12.068
-
(2013)
Chemosphere
, vol.91
, Issue.5
, pp. 623-628
-
-
Feng, C.J.1
Hou, C.2
Chen, S.H.3
Yu, C.P.4
-
11
-
-
56949084168
-
Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes
-
Y.Gao,, L.Pan, H.Li, Y.Zhang, Z.Zhang, and Y.Chen. 2009. Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. Thin Solid Films 517: 1616–19. doi:10.1016/j.tsf.2008.09.065
-
(2009)
Thin Solid Films
, vol.517
, pp. 1616-1619
-
-
Gao, Y.1
Pan, L.2
Li, H.3
Zhang, Y.4
Zhang, Z.5
Chen, Y.6
-
12
-
-
0037202073
-
Optimization of the chemical vapor deposition process for carbon nanotubes fabrication
-
M.Grujicic,, G.Cao, and B.Gersten. 2002. Optimization of the chemical vapor deposition process for carbon nanotubes fabrication. Applied Surface Science 199:90–106. doi:10.1016/s0169–4332(02)00892–9
-
(2002)
Applied Surface Science
, vol.199
, pp. 90-106
-
-
Grujicic, M.1
Cao, G.2
Gersten, B.3
-
13
-
-
84942238124
-
Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization
-
X.Gu,, M.Hu, Z.Du, J.Huang, and C.Wang. 2015. Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization. Electrochimica Acta 182:183–91. doi:10.1016/j.electacta.2015.09.076
-
(2015)
Electrochimica Acta
, vol.182
, pp. 183-191
-
-
Gu, X.1
Hu, M.2
Du, Z.3
Huang, J.4
Wang, C.5
-
14
-
-
84924236429
-
Facile fabrication of graphene–polypyrrole–Mn composites as high-performance electrodes for capacitive deionization
-
X.Gu,, Y.Yang, Y.Hu, M.Hu, J.Huang, and C.Wang. 2015. Facile fabrication of graphene–polypyrrole–Mn composites as high-performance electrodes for capacitive deionization. Journal of Materials Chemistry A 3:5866–74. doi:10.1039/c4ta06646d
-
(2015)
Journal of Materials Chemistry A
, vol.3
, pp. 5866-5874
-
-
Gu, X.1
Yang, Y.2
Hu, Y.3
Hu, M.4
Huang, J.5
Wang, C.6
-
15
-
-
84872402967
-
Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization
-
L.Han,, K.G.Karthikeyan, M.A.Anderson, J.J.Wouters, and K.B.Gregory. 2013. Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization. Electrochimica Acta 90:573–81. doi:10.1016/j.electacta.2012.11.069
-
(2013)
Electrochimica Acta
, vol.90
, pp. 573-581
-
-
Han, L.1
Karthikeyan, K.G.2
Anderson, M.A.3
Wouters, J.J.4
Gregory, K.B.5
-
16
-
-
33747344706
-
Electrosorption capacitance of nanostructured carbon-based materials
-
C.H.Hou,, C.Liang, S.Yiacoumi, S.Dai, and C.Tsouris. 2006. Electrosorption capacitance of nanostructured carbon-based materials. Journal of Colloid and Interface Science 302:54–61. doi:10.1016/j.jcis.2006.06.009
-
(2006)
Journal of Colloid and Interface Science
, vol.302
, pp. 54-61
-
-
Hou, C.H.1
Liang, C.2
Yiacoumi, S.3
Dai, S.4
Tsouris, C.5
-
17
-
-
84857914560
-
Graphene nanosheets reduced by a multi-step process as high performance electrode material for capacitive deionization
-
B.Jia,, and L.Zou. 2012a. Graphene nanosheets reduced by a multi-step process as high performance electrode material for capacitive deionization. Carbon 50:2315–21. doi:10.1016/j.carbon.2012.01.051
-
(2012)
Carbon
, vol.50
, pp. 2315-2321
-
-
Jia, B.1
Zou, L.2
-
18
-
-
84866412135
-
Wettability and its influence on graphene nanosheets as electrode material for capacitive deionization
-
B.Jia,, and L.Zou. 2012b. Wettability and its influence on graphene nanosheets as electrode material for capacitive deionization. Chemical Physics Letters 548:23–28. doi:10.1016/j.cplett.2012.06.016
-
(2012)
Chemical Physics Letters
, vol.548
, pp. 23-28
-
-
Jia, B.1
Zou, L.2
-
19
-
-
84865534336
-
Application of capacitive deionization (CDI) technology to insulin purification process
-
S.M.Jung,, J.H.Choi, and J.H.Kim. 2012. Application of capacitive deionization (CDI) technology to insulin purification process. Separation and Purification Technology 98:31–35. doi:10.1016/j.seppur.2012.06.005
-
(2012)
Separation and Purification Technology
, vol.98
, pp. 31-35
-
-
Jung, S.M.1
Choi, J.H.2
Kim, J.H.3
-
20
-
-
84897958633
-
2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization
-
2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization. Desalination 342:70–74. doi:10.1016/j.desal.2013.07.016
-
(2014)
Desalination
, vol.342
, pp. 70-74
-
-
Kim, C.1
Lee, J.2
Kim, S.3
Yoon, J.4
-
21
-
-
84882749348
-
A review on membrane fabrication: Structure, properties and performance relationship
-
B.S.Lalia,, V.Kochkodan, R.Hashaikeh, and N.Hilal. 2013. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326:77–95. doi:10.1016/j.desal.2013.06.016
-
(2013)
Desalination
, vol.326
, pp. 77-95
-
-
Lalia, B.S.1
Kochkodan, V.2
Hashaikeh, R.3
Hilal, N.4
-
22
-
-
84923035997
-
Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes
-
K.Laxman,, M.T.Z.Myint, M.Al Abri, P.Sathe, S.Dobretsov, and J.Dutta. 2015. Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes. Desalination 362:126–32. doi:10.1016/j.desal.2015.02.010
-
(2015)
Desalination
, vol.362
, pp. 126-132
-
-
Laxman, K.1
Myint, M.T.Z.2
Al Abri, M.3
Sathe, P.4
Dobretsov, S.5
Dutta, J.6
-
23
-
-
84920102636
-
Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water
-
K.Laxman,, M.T.Z.Myint, R.Khan, T.Pervez, and J.Dutta. 2015. Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water. Desalination 359:64–70. doi:10.1016/j.desal.2014.12.029
-
(2015)
Desalination
, vol.359
, pp. 64-70
-
-
Laxman, K.1
Myint, M.T.Z.2
Khan, R.3
Pervez, T.4
Dutta, J.5
-
24
-
-
77953621894
-
Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process
-
J.H.Lee,, W.S.Bae, and J.H.Choi. 2010. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination 258:159–63. doi:10.1016/j.desal.2010.03.020
-
(2010)
Desalination
, vol.258
, pp. 159-163
-
-
Lee, J.H.1
Bae, W.S.2
Choi, J.H.3
-
25
-
-
84875794658
-
2 nanoparticles for the application of electrosorption process
-
2 nanoparticles for the application of electrosorption process. Desalination and Water Treatment 51:503–10. doi:10.1080/19443994.2012.714581
-
(2013)
Desalination and Water Treatment
, vol.51
, pp. 503-510
-
-
Lee, J.H.1
Choi, J.H.2
-
26
-
-
79951963404
-
A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization
-
H.Li,, L.Pan, T.Lu, Y.Zhan, C.Nie, and Z.Sun. 2011. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry 653:40–44. doi:10.1016/j.jelechem.2011.01.012
-
(2011)
Journal of Electroanalytical Chemistry
, vol.653
, pp. 40-44
-
-
Li, H.1
Pan, L.2
Lu, T.3
Zhan, Y.4
Nie, C.5
Sun, Z.6
-
27
-
-
84863923965
-
Reduced graphene oxide and activated carbon composites for capacitive deionization
-
H.Li,, L.Pan, C.Nie, Y.Liu, and Z.Sun. 2012. Reduced graphene oxide and activated carbon composites for capacitive deionization. Journal of Materials Chemistry 22:15556–61. doi:10.1039/c2jm32207b
-
(2012)
Journal of Materials Chemistry
, vol.22
, pp. 15556-15561
-
-
Li, H.1
Pan, L.2
Nie, C.3
Liu, Y.4
Sun, Z.5
-
28
-
-
78449248575
-
Novel graphene-like electrodes for capacitive deionization
-
H.Li,, L.Zou, L.Pan, and Z.Sun. 2010. Novel graphene-like electrodes for capacitive deionization. Environmental Science & Technology 44:8692–97. doi:10.1021/es101888j
-
(2010)
Environmental Science & Technology
, vol.44
, pp. 8692-8697
-
-
Li, H.1
Zou, L.2
Pan, L.3
Sun, Z.4
-
29
-
-
70349283116
-
Electrosorption behavior of graphene in NaCl solutions
-
H.B.Li,, T.Lu, L.K.Pan, Y.P.Zhang, and Z.Sun. 2009. Electrosorption behavior of graphene in NaCl solutions. Journal of Materials Chemistry 19:6773–79. doi:10.1039/b907703k
-
(2009)
Journal of Materials Chemistry
, vol.19
, pp. 6773-6779
-
-
Li, H.B.1
Lu, T.2
Pan, L.K.3
Zhang, Y.P.4
Sun, Z.5
-
30
-
-
0142095092
-
2+ ions from aqueous solutions by multiwalled carbon nanotubes
-
2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41 (14):2787–92. doi:10.1016/s0008-6223(03)00392-0
-
(2003)
Carbon
, vol.41
, Issue.14
, pp. 2787-2792
-
-
Li, Y.H.1
Ding, J.2
Luan, Z.K.3
Di, Z.C.4
Zhu, Y.F.5
Xu, C.L.6
Wu, D.H.7
Wei, B.Q.8
-
31
-
-
84919402915
-
3D porous graphene with ultrahigh surface area for microscale capacitive deionization
-
Z.Li,, B.Song, Z.Wu, Z.Lin, Y.Yao, K.-S.Moon, and C.P.Wong. 2015. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energy 11:711–18. doi:10.1016/j.nanoen.2014.11.018
-
(2015)
Nano Energy
, vol.11
, pp. 711-718
-
-
Li, Z.1
Song, B.2
Wu, Z.3
Lin, Z.4
Yao, Y.5
Moon, K.-S.6
Wong, C.P.7
-
32
-
-
84911926437
-
Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis
-
J.Liu,, M.Lu, J.Yang, J.Cheng, and W.Cai. 2015. Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis. Electrochimica Acta 151:312–18. doi:10.1016/j.electacta.2014.11.023
-
(2015)
Electrochimica Acta
, vol.151
, pp. 312-318
-
-
Liu, J.1
Lu, M.2
Yang, J.3
Cheng, J.4
Cai, W.5
-
33
-
-
84929335446
-
High performance graphene composite microsphere electrodes for capacitive deionization
-
L.Liu,, L.Liao, Q.Meng, and B.Cao. 2015. High performance graphene composite microsphere electrodes for capacitive deionization. Carbon 90:75–84. doi:10.1016/j.carbon.2015.04.009
-
(2015)
Carbon
, vol.90
, pp. 75-84
-
-
Liu, L.1
Liao, L.2
Meng, Q.3
Cao, B.4
-
34
-
-
84911470984
-
Porous carbon spheres via microwave-assisted synthesis for capacitive deionization
-
Y.Liu,, L.Pan, T.Chen, X.Xu, T.Lu, Z.Sun, and D.H.C.Chua. 2015. Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochimica Acta 151:489–96. doi:10.1016/j.electacta.2014.11.086
-
(2015)
Electrochimica Acta
, vol.151
, pp. 489-496
-
-
Liu, Y.1
Pan, L.2
Chen, T.3
Xu, X.4
Lu, T.5
Sun, Z.6
Chua, D.H.C.7
-
35
-
-
84939193432
-
Nitrogen-doped carbon nanorods with excellent capacitive deionization ability
-
Y.Liu,, X.Xu, M.Wang, T.Lu, Z.Sun, and L.Pan. 2015a. Nitrogen-doped carbon nanorods with excellent capacitive deionization ability. Journal of Materials Chemistry A 3:17304–11. doi:10.1039/c5ta03663a
-
(2015)
Journal of Materials Chemistry A
, vol.3
, pp. 17304-17311
-
-
Liu, Y.1
Xu, X.2
Wang, M.3
Lu, T.4
Sun, Z.5
Pan, L.6
-
36
-
-
84937572829
-
Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization
-
Y.Liu,, X.Xu, M.Wang, T.Lu, Z.Sun, and L.Pan. 2015b. Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chemical Communication 51:12020–23. doi:10.1039/c5cc03999a
-
(2015)
Chemical Communication
, vol.51
, pp. 12020-12023
-
-
Liu, Y.1
Xu, X.2
Wang, M.3
Lu, T.4
Sun, Z.5
Pan, L.6
-
37
-
-
33646352984
-
Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies
-
C.S.Lu,, H.Chiu, and C.T.Liu. 2006. Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies. Industrial & Engineering Chemistry Research 45 (8):2850–55. doi:10.1021/ie051206 h
-
(2006)
Industrial & Engineering Chemistry Research
, vol.45
, Issue.8
, pp. 2850-2855
-
-
Lu, C.S.1
Chiu, H.2
Liu, C.T.3
-
38
-
-
49849093393
-
Environmental applications of carbon-based nanomaterials
-
M.S.Mauter,, and M.Elimelech. 2008. Environmental applications of carbon-based nanomaterials. Environmental Science & Technology 42 (16):5843–59. doi:10.1021/es8006904
-
(2008)
Environmental Science & Technology
, vol.42
, Issue.16
, pp. 5843-5859
-
-
Mauter, M.S.1
Elimelech, M.2
-
39
-
-
80054879443
-
Antifouling ultra filtration membranes via post-fabrication grafting of biocidal nanomaterials
-
M.S.Mauter,, Y.Wang, K.C.Okemgbo, C.O.Osuji, E.P.Giannelis, and M.Elimelech. 2011. Antifouling ultra filtration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Applied Materials & Interfaces 3 (8):2861–68. doi:10.1021/am200522v
-
(2011)
ACS Applied Materials & Interfaces
, vol.3
, Issue.8
, pp. 2861-2868
-
-
Mauter, M.S.1
Wang, Y.2
Okemgbo, K.C.3
Osuji, C.O.4
Giannelis, E.P.5
Elimelech, M.6
-
40
-
-
78649643862
-
Techno-economic assessment and environmental impacts of desalination technologies
-
T.Mezher,, H.Fath, Z.Abbas, and A.Khaled. 2011. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 266:263–73. doi:10.1016/j.desal.2010.08.035
-
(2011)
Desalination
, vol.266
, pp. 263-273
-
-
Mezher, T.1
Fath, H.2
Abbas, Z.3
Khaled, A.4
-
41
-
-
84880243547
-
Preparation of chitosan-multiwalled carbon nanotubes blended membranes: Characterization and performance in the separation of sodium and magnesium ions
-
Z.V.P.Murthy,, and M.S.Gaikwad. 2013. Preparation of chitosan-multiwalled carbon nanotubes blended membranes: Characterization and performance in the separation of sodium and magnesium ions. Nanoscale and Microscale Thermophysical Engineering 17:245–62. doi:10.1080/15567265.2013.787571
-
(2013)
Nanoscale and Microscale Thermophysical Engineering
, vol.17
, pp. 245-262
-
-
Murthy, Z.V.P.1
Gaikwad, M.S.2
-
42
-
-
84866169743
-
Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach
-
M.T.Z.Myint,, and J.Dutta. 2012. Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination 305:24–30. doi:10.1016/j.desal.2012.08.010
-
(2012)
Desalination
, vol.305
, pp. 24-30
-
-
Myint, M.T.Z.1
Dutta, J.2
-
43
-
-
78650782606
-
Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology
-
S.Nadakatti,, M.Tendulkar, and M.Kadam. 2011. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination 268 (1–3):182–88. doi:10.1016/j.desal.2010.10.020
-
(2011)
Desalination
, vol.268
, Issue.1-3
, pp. 182-188
-
-
Nadakatti, S.1
Tendulkar, M.2
Kadam, M.3
-
44
-
-
47049111347
-
Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)
-
Y.Oren, 2008. Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 228:10–29. doi:10.1016/j.desal.2007.08.005
-
(2008)
Desalination
, vol.228
, pp. 10-29
-
-
Oren, Y.1
-
45
-
-
58149158071
-
Adsorption mechanisms of organic chemicals on carbon nanotubes
-
B.Pan,, and B.S.Xing. 2008. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology 42 (24):9005–13. doi:10.1021/es801777n
-
(2008)
Environmental Science & Technology
, vol.42
, Issue.24
, pp. 9005-9013
-
-
Pan, B.1
Xing, B.S.2
-
46
-
-
84935032510
-
Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization
-
H.Pan,, J.Yang, S.Wang, Z.Xiong, W.Cai, and J.Liu. 2015. Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization. Journal of Materials Chemistry A 3:13827–34. doi:10.1039/c5ta02954f
-
(2015)
Journal of Materials Chemistry A
, vol.3
, pp. 13827-13834
-
-
Pan, H.1
Yang, J.2
Wang, S.3
Xiong, Z.4
Cai, W.5
Liu, J.6
-
47
-
-
84863362675
-
High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization
-
Z.Peng,, D.Zhang, L.Shi, and T.Yan. 2012. High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. Journal of Materials Chemistry 22: 6603–12. doi:10.1039/c2jm16735b
-
(2012)
Journal of Materials Chemistry
, vol.22
, pp. 6603-6612
-
-
Peng, Z.1
Zhang, D.2
Shi, L.3
Yan, T.4
-
48
-
-
84877809083
-
Review on the science and technology of water desalination by capacitive deionization
-
S.Porada,, R.Zhao, A.van der Wal, V.Presser, and P.M.Biesheuvel. 2013. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 58: 1388–442. doi:10.1016/j. pmatsci.2013.03.005
-
(2013)
Progress in Materials Science
, vol.58
, pp. 1388-1442
-
-
Porada, S.1
Zhao, R.2
van der Wal, A.3
Presser, V.4
Biesheuvel, P.M.5
-
49
-
-
33845297697
-
Nonconventional water resources and opportunities for water augmentation to achieve food security in water scarce countries
-
M.Qadir,, B.R.Sharma, A.Bruggeman, R.Choukr-Allah, and F.Karajeh. 2007. Nonconventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agricultural Water Management 87:2–22. doi:10.1016/j.agwat.2006.03.018
-
(2007)
Agricultural Water Management
, vol.87
, pp. 2-22
-
-
Qadir, M.1
Sharma, B.R.2
Bruggeman, A.3
Choukr-Allah, R.4
Karajeh, F.5
-
50
-
-
32944470503
-
Electrospun nanofibers: Solving global issues
-
S.Ramakrishna,, K.Fujihara, W.E.Teo, T.Yong, Z.W.Ma, and R.Ramaseshan. 2006. Electrospun nanofibers: Solving global issues. Materials Today 9 (3):40–50. doi:10.1016/s1369-7021(06)71389-x
-
(2006)
Materials Today
, vol.9
, Issue.3
, pp. 40-50
-
-
Ramakrishna, S.1
Fujihara, K.2
Teo, W.E.3
Yong, T.4
Ma, Z.W.5
Ramaseshan, R.6
-
51
-
-
0037398484
-
Improvement in capacitive deionization function of activated carbon cloth by titania modification
-
M.W.Ryoo,, and G.Seo. 2003. Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Research 37:1527–34. doi:10.1016/s0043-1354(02)00531-6
-
(2003)
Water Research
, vol.37
, pp. 1527-1534
-
-
Ryoo, M.W.1
Seo, G.2
-
52
-
-
77949315317
-
Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications
-
S.J.Seo,, H.Jeon, J.K.Lee, G.Y.Kim, D.Park, H.Nojima, J.Lee, and S.H.Moon. 2010. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research 44 (7):2267–75. doi:10.1016/j.watres.2009.10.020
-
(2010)
Water Research
, vol.44
, Issue.7
, pp. 2267-2275
-
-
Seo, S.J.1
Jeon, H.2
Lee, J.K.3
Kim, G.Y.4
Park, D.5
Nojima, H.6
Lee, J.7
Moon, S.H.8
-
53
-
-
48449090154
-
Synthesis of water soluble graphene
-
Y.Si,, and E.T.Samulski. 2008. Synthesis of water soluble graphene. Nano Letters 8:1679–82. doi:10.1021/nl080604 h
-
(2008)
Nano Letters
, vol.8
, pp. 1679-1682
-
-
Si, Y.1
Samulski, E.T.2
-
54
-
-
77957974773
-
Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens
-
J.Theron,, T.E.Cloete, and M.de Kwaadsteniet. 2010. Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens. Critical Reviews in Microbiology 36 (4):318–39. doi:10.3109/1040841x.2010.489892
-
(2010)
Critical Reviews in Microbiology
, vol.36
, Issue.4
, pp. 318-339
-
-
Theron, J.1
Cloete, T.E.2
de Kwaadsteniet, M.3
-
55
-
-
77952495824
-
Nanomaterial enabled biosensors for pathogen monitoring—A review
-
P.J.Vikesland,, and K.R.Wigginton. 2010. Nanomaterial enabled biosensors for pathogen monitoring—A review. Environmental Science & Technology 44 (10):3656–69. doi:10.1021/es903704z
-
(2010)
Environmental Science & Technology
, vol.44
, Issue.10
, pp. 3656-3669
-
-
Vikesland, P.J.1
Wigginton, K.R.2
-
56
-
-
84862804747
-
Activated carbon nanofiber webs made by electrospinning for capacitive deionization
-
G.Wang,, C.Pan, L.Wang, Q.Dong, C.Yu, Z.Zhao, and J.Qiu. 2012. Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochimica Acta 69:65–70. doi:10.1016/j.electacta.2012.02.066
-
(2012)
Electrochimica Acta
, vol.69
, pp. 65-70
-
-
Wang, G.1
Pan, C.2
Wang, L.3
Dong, Q.4
Yu, C.5
Zhao, Z.6
Qiu, J.7
-
57
-
-
84884159989
-
Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization
-
H.Wang,, D.Zhang, T.Yan, X.Wen, J.Zhang, L.Shi, and Q.Zhong. 2013. Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A 1:11778–89. doi:10.1039/c3ta11926b
-
(2013)
Journal of Materials Chemistry A
, vol.1
, pp. 11778-11789
-
-
Wang, H.1
Zhang, D.2
Yan, T.3
Wen, X.4
Zhang, J.5
Shi, L.6
Zhong, Q.7
-
58
-
-
33746493443
-
Electrosorption of NaCl solutions with carbon nanotubes and nanofibers composite film electrodes
-
X.Z.Wang,, M.G.Li, Y.W.Chen, R.M.Cheng, S.M.Huang, L.K.Pan, and Z.Sun. 2006. Electrosorption of NaCl solutions with carbon nanotubes and nanofibers composite film electrodes. Electrochemical and Solid-State Letters 9:E23–26. doi:10.1149/1.2213354
-
(2006)
Electrochemical and Solid-State Letters
, vol.9
, pp. E23-E26
-
-
Wang, X.Z.1
Li, M.G.2
Chen, Y.W.3
Cheng, R.M.4
Huang, S.M.5
Pan, L.K.6
Sun, Z.7
-
59
-
-
84862838378
-
Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material
-
Z.Wang,, B.Dou, L.Zheng, G.Zhang, Z.Liu, and Z.Hao. 2012. Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. Desalination 299:96–102. doi:10.1016/j.desal.2012.05.028
-
(2012)
Desalination
, vol.299
, pp. 96-102
-
-
Wang, Z.1
Dou, B.2
Zheng, L.3
Zhang, G.4
Liu, Z.5
Hao, Z.6
-
60
-
-
27944461422
-
Capacitive deionization technology™: An alternative desalination solution
-
T.J.Welgemoed,, and C.F.Schutte. 2005. Capacitive deionization technology™: An alternative desalination solution. Desalination 183 (1–3):327–40. doi:10.1016/j.desal.2005.02.054
-
(2005)
Desalination
, vol.183
, Issue.1-3
, pp. 327-340
-
-
Welgemoed, T.J.1
Schutte, C.F.2
-
61
-
-
84884343161
-
Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization
-
X.Wen,, D.Zhang, T.Yan, J.Zhang, and L.Shi. 2013. Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. Journal of Materials Chemistry A 1:12334–44. doi:10.1039/c3ta12683 h
-
(2013)
Journal of Materials Chemistry A
, vol.1
, pp. 12334-12344
-
-
Wen, X.1
Zhang, D.2
Yan, T.3
Zhang, J.4
Shi, L.5
-
62
-
-
84913580228
-
Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization
-
Y.Wimalasiri,, M.Mossad, and L.Zou. 2015. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination 357:178–88. doi:10.1016/j.desal.2014.11.015
-
(2015)
Desalination
, vol.357
, pp. 178-188
-
-
Wimalasiri, Y.1
Mossad, M.2
Zou, L.3
-
63
-
-
84877696848
-
Carbon nanotube/graphene composite for enhanced capacitive deionization performance
-
Y.Wimalasiri,, and L.Zou. 2013. Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–71. doi:10.1016/j.carbon.2013.03.040
-
(2013)
Carbon
, vol.59
, pp. 464-471
-
-
Wimalasiri, Y.1
Zou, L.2
-
65
-
-
84934893933
-
Rational design and fabrication of graphene/ carbon nanotubes hybrid sponge for high-performance capacitive deionization
-
X.Xu,, Y.Liu, T.Lu, Z.Sun, D.H.C.Chua, and L.Pan. 2015. Rational design and fabrication of graphene/ carbon nanotubes hybrid sponge for high-performance capacitive deionization. Journal of Materials Chemistry A 3:13418–25. doi:10.1039/c5ta01889 g
-
(2015)
Journal of Materials Chemistry A
, vol.3
, pp. 13418-13425
-
-
Xu, X.1
Liu, Y.2
Lu, T.3
Sun, Z.4
Chua, D.H.C.5
Pan, L.6
-
66
-
-
84921458551
-
Enhanced capacitive deionization performance of graphene by nitrogen doping
-
X.Xu,, L.Pan, Y.Liu, T.Lu, and Z.Sun. 2015. Enhanced capacitive deionization performance of graphene by nitrogen doping. Journal of Colloid and Interface Science 445:143–50. doi:10.1016/j.jcis.2015.01.003
-
(2015)
Journal of Colloid and Interface Science
, vol.445
, pp. 143-150
-
-
Xu, X.1
Pan, L.2
Liu, Y.3
Lu, T.4
Sun, Z.5
-
67
-
-
84931280179
-
Facile synthesis of novel graphene sponge for high performance capacitive deionization
-
X.Xu,, L.Pan, Y.Liu, T.Lu, Z.Sun, and D.H.C.Chua. 2015. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific Reports 5:8458. doi:10.1038/srep08458
-
(2015)
Scientific Reports
, vol.5
, pp. 8458
-
-
Xu, X.1
Pan, L.2
Liu, Y.3
Lu, T.4
Sun, Z.5
Chua, D.H.C.6
-
68
-
-
84931281566
-
Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance
-
X.Xu,, Z.Sun, D.H.C.Chua, and L.Pan. 2015. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Scientific Reports 5:11225. doi:10.1038/srep11225
-
(2015)
Scientific Reports
, vol.5
, pp. 11225
-
-
Xu, X.1
Sun, Z.2
Chua, D.H.C.3
Pan, L.4
-
69
-
-
79959511004
-
2/nanoporous carbon composite electrodes in capacitive deionization technology
-
2/nanoporous carbon composite electrodes in capacitive deionization technology. Desalination 276:199–206. doi:10.1016/j.desal.2011.03.044
-
(2011)
Desalination
, vol.276
, pp. 199-206
-
-
Yang, J.1
Zou, L.2
Song, H.3
Hao, Z.4
-
70
-
-
84856026325
-
2 in the membrane capacitive deionization
-
2 in the membrane capacitive deionization. Desalination 286:108–14. doi:10.1016/j.desal.2011.11.013
-
(2012)
Desalination
, vol.286
, pp. 108-114
-
-
Yang, J.1
Zou, L.2
Song, H.3
-
71
-
-
84903538969
-
Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance
-
Z.Y.Yang,, L.J.Jin, G.Q.Lu, Q.Q.Xiao, Y.X.Zhang, L.Jing, X.X.Zhan, Y.M.Yan, and K.N.Sun. 2014. Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Advanced Functional Materials 24 (25):3917–25. doi:10.1002/adfm.201304091
-
(2014)
Advanced Functional Materials
, vol.24
, Issue.25
, pp. 3917-3925
-
-
Yang, Z.Y.1
Jin, L.J.2
Lu, G.Q.3
Xiao, Q.Q.4
Zhang, Y.X.5
Jing, L.6
Zhan, X.X.7
Yan, Y.M.8
Sun, K.N.9
-
72
-
-
84887918905
-
Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water
-
H.Yin,, S.Zhao, J.Wan, H.Tang, L.Chang, L.He, H.Zhao, Y.Gao, and Z.Tang. 2013. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Advanced Materials 25:6270–76. doi:10.1002/adma.201302223
-
(2013)
Advanced Materials
, vol.25
, pp. 6270-6276
-
-
Yin, H.1
Zhao, S.2
Wan, J.3
Tang, H.4
Chang, L.5
He, L.6
Zhao, H.7
Gao, Y.8
Tang, Z.9
-
73
-
-
84862791550
-
Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water
-
L.Yuan,, X.Yang, P.Liang, L.Wang, Z.H.Huang, J.Wei, and X.Huang. 2012. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresource Technology 110:735–38. doi:10.1016/j.biortech.2012.01.137
-
(2012)
Bioresource Technology
, vol.110
, pp. 735-738
-
-
Yuan, L.1
Yang, X.2
Liang, P.3
Wang, L.4
Huang, Z.H.5
Wei, J.6
Huang, X.7
-
74
-
-
84863689248
-
Enhanced capacitive deionization performance of graphene/carbon nanotube composites
-
D.Zhang,, T.Yan, L.Shi, Z.Peng, X.Wen, and J.Zhang. 2012. Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry 22:14696–704. doi:10.1039/c2jm31393f
-
(2012)
Journal of Materials Chemistry
, vol.22
, pp. 14696-14704
-
-
Zhang, D.1
Yan, T.2
Shi, L.3
Peng, Z.4
Wen, X.5
Zhang, J.6
-
75
-
-
34548720615
-
Membrane and other treatment technologies –pros and cons
-
Gu B., Coates J., (eds), New York: Springer
-
P.Zhou,, G.M.Brown, and B.Gu. 2006. Membrane and other treatment technologies –pros and cons. In Perchlorate, eds. B.Gu, and J.Coates 389–404. New York: Springer.
-
(2006)
Perchlorate
, pp. 389-404
-
-
Zhou, P.1
Brown, G.M.2
Gu, B.3
-
76
-
-
59349116749
-
Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal
-
K.Zodrow,, L.Brunet, S.Mahendra, D.Li, A.Zhang, Q.L.Li, and P.J.J.Alvarez. 2009. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research 43 (3):715–23. doi:10.1016/j.watres.2008.11.014
-
(2009)
Water Research
, vol.43
, Issue.3
, pp. 715-723
-
-
Zodrow, K.1
Brunet, L.2
Mahendra, S.3
Li, D.4
Zhang, A.5
Li, Q.L.6
Alvarez, P.J.J.7
-
77
-
-
41949127300
-
Using mesoporous carbon electrodes for brackish water desalination
-
L.Zou,, L.X.Li, H.H.Song, and G.Morris. 2008. Using mesoporous carbon electrodes for brackish water desalination. Water Research 42:2340–48. doi:10.1016/j.watres.2007.12.022
-
(2008)
Water Research
, vol.42
, pp. 2340-2348
-
-
Zou, L.1
Li, L.X.2
Song, H.H.3
Morris, G.4
|