메뉴 건너뛰기




Volumn 49, Issue 11, 2016, Pages 1641-1655

Capacitive Deionization for Desalination Using Nanostructured Electrodes

Author keywords

Capacitive deionization; desalination; electrosorption; nanomaterials

Indexed keywords


EID: 84975230112     PISSN: 00032719     EISSN: 1532236X     Source Type: Journal    
DOI: 10.1080/00032719.2015.1118485     Document Type: Review
Times cited : (29)

References (77)
  • 1
    • 0346304911 scopus 로고    scopus 로고
    • Nanotubes from carbon
    • P.M.Ajayan, 1999. Nanotubes from carbon. Chemical Reviews 99 (7):1787–800.
    • (1999) Chemical Reviews , vol.99 , Issue.7 , pp. 1787-1800
    • Ajayan, P.M.1
  • 2
    • 84897958320 scopus 로고    scopus 로고
    • Application of capacitive deionisation in water desalination: A review
    • F.A.AlMarzooqi,, A.A.AlGhaferi, I.Saadat, and N.Hilal. 2014. Application of capacitive deionisation in water desalination: A review. Desalination 342:3–15. doi:10.1016/j.desal.2014.02.031
    • (2014) Desalination , vol.342 , pp. 3-15
    • AlMarzooqi, F.A.1    AlGhaferi, A.A.2    Saadat, I.3    Hilal, N.4
  • 3
    • 77950041562 scopus 로고    scopus 로고
    • Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?
    • M.A.Anderson,, A.L.Cudero, and J.Palma. 2010. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 55:3845–56. doi:10.1016/j.electacta.2010.02.012
    • (2010) Electrochimica Acta , vol.55 , pp. 3845-3856
    • Anderson, M.A.1    Cudero, A.L.2    Palma, J.3
  • 4
    • 84881614876 scopus 로고    scopus 로고
    • Comment on “Carbon nanotube/graphene composite for enhanced capacitive deionization performance” by Y. Wimalasiri and L. Zou
    • P.M.Biesheuvel,, S.Porada, and V.Presser. 2013. Comment on “Carbon nanotube/graphene composite for enhanced capacitive deionization performance” by Y. Wimalasiri and L. Zou. Carbon 63:574–75. doi:10.1016/j.carbon.2013.06.088
    • (2013) Carbon , vol.63 , pp. 574-575
    • Biesheuvel, P.M.1    Porada, S.2    Presser, V.3
  • 5
    • 17844376480 scopus 로고    scopus 로고
    • NaCl adsorption in multi-walled carbon nanotubes
    • K.Dai,, L.Shi, J.Fang, D.Zhang, and B.Yu. 2005. NaCl adsorption in multi-walled carbon nanotubes. Materials Letters 59:1989–92. doi:10.1016/j.matlet.2005.01.042
    • (2005) Materials Letters , vol.59 , pp. 1989-1992
    • Dai, K.1    Shi, L.2    Fang, J.3    Zhang, D.4    Yu, B.5
  • 6
    • 84899132337 scopus 로고    scopus 로고
    • 2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology
    • 2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 344:289–98. doi:10.1016/j.desal.2014.03.028
    • (2014) Desalination , vol.344 , pp. 289-298
    • El-Deen, A.G.1    Barakat, N.A.M.2    Kim, H.Y.3
  • 7
    • 84905922224 scopus 로고    scopus 로고
    • 2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization
    • 2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization. Ceramics International 40:14627–34. doi:10.1016/j.ceramint.2014.06.049
    • (2014) Ceramics International , vol.40 , pp. 14627-14634
    • El-Deen, A.G.1    Barakat, N.A.M.2    Khalil, K.A.3    Motlak, M.4    Yong Kim, H.5
  • 8
    • 84921810696 scopus 로고    scopus 로고
    • 2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization
    • 2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 361:53–64. doi:10.1016/j.desal.2015.01.033
    • (2015) Desalination , vol.361 , pp. 53-64
    • El-Deen, A.G.1    Choi, J.-H.2    Kim, C.S.3    Khalil, K.A.4    Almajid, A.A.5    Barakat, N.A.M.6
  • 9
    • 79961214184 scopus 로고    scopus 로고
    • The future of seawater desalination: Energy, technology, and the environment
    • M.Elimelech,, and W.A.Phillip. 2011. The future of seawater desalination: Energy, technology, and the environment. Science 333:712–17. doi:10.1126/science.1200488
    • (2011) Science , vol.333 , pp. 712-717
    • Elimelech, M.1    Phillip, W.A.2
  • 10
    • 84875807812 scopus 로고    scopus 로고
    • A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions
    • C.J.Feng,, C.Hou, S.H.Chen, and C.P.Yu. 2013. A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions. Chemosphere 91 (5):623–28. doi:10.1016/j.chemosphere.2012.12.068
    • (2013) Chemosphere , vol.91 , Issue.5 , pp. 623-628
    • Feng, C.J.1    Hou, C.2    Chen, S.H.3    Yu, C.P.4
  • 11
    • 56949084168 scopus 로고    scopus 로고
    • Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes
    • Y.Gao,, L.Pan, H.Li, Y.Zhang, Z.Zhang, and Y.Chen. 2009. Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. Thin Solid Films 517: 1616–19. doi:10.1016/j.tsf.2008.09.065
    • (2009) Thin Solid Films , vol.517 , pp. 1616-1619
    • Gao, Y.1    Pan, L.2    Li, H.3    Zhang, Y.4    Zhang, Z.5    Chen, Y.6
  • 12
    • 0037202073 scopus 로고    scopus 로고
    • Optimization of the chemical vapor deposition process for carbon nanotubes fabrication
    • M.Grujicic,, G.Cao, and B.Gersten. 2002. Optimization of the chemical vapor deposition process for carbon nanotubes fabrication. Applied Surface Science 199:90–106. doi:10.1016/s0169–4332(02)00892–9
    • (2002) Applied Surface Science , vol.199 , pp. 90-106
    • Grujicic, M.1    Cao, G.2    Gersten, B.3
  • 13
    • 84942238124 scopus 로고    scopus 로고
    • Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization
    • X.Gu,, M.Hu, Z.Du, J.Huang, and C.Wang. 2015. Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization. Electrochimica Acta 182:183–91. doi:10.1016/j.electacta.2015.09.076
    • (2015) Electrochimica Acta , vol.182 , pp. 183-191
    • Gu, X.1    Hu, M.2    Du, Z.3    Huang, J.4    Wang, C.5
  • 14
    • 84924236429 scopus 로고    scopus 로고
    • Facile fabrication of graphene–polypyrrole–Mn composites as high-performance electrodes for capacitive deionization
    • X.Gu,, Y.Yang, Y.Hu, M.Hu, J.Huang, and C.Wang. 2015. Facile fabrication of graphene–polypyrrole–Mn composites as high-performance electrodes for capacitive deionization. Journal of Materials Chemistry A 3:5866–74. doi:10.1039/c4ta06646d
    • (2015) Journal of Materials Chemistry A , vol.3 , pp. 5866-5874
    • Gu, X.1    Yang, Y.2    Hu, Y.3    Hu, M.4    Huang, J.5    Wang, C.6
  • 15
    • 84872402967 scopus 로고    scopus 로고
    • Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization
    • L.Han,, K.G.Karthikeyan, M.A.Anderson, J.J.Wouters, and K.B.Gregory. 2013. Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization. Electrochimica Acta 90:573–81. doi:10.1016/j.electacta.2012.11.069
    • (2013) Electrochimica Acta , vol.90 , pp. 573-581
    • Han, L.1    Karthikeyan, K.G.2    Anderson, M.A.3    Wouters, J.J.4    Gregory, K.B.5
  • 17
    • 84857914560 scopus 로고    scopus 로고
    • Graphene nanosheets reduced by a multi-step process as high performance electrode material for capacitive deionization
    • B.Jia,, and L.Zou. 2012a. Graphene nanosheets reduced by a multi-step process as high performance electrode material for capacitive deionization. Carbon 50:2315–21. doi:10.1016/j.carbon.2012.01.051
    • (2012) Carbon , vol.50 , pp. 2315-2321
    • Jia, B.1    Zou, L.2
  • 18
    • 84866412135 scopus 로고    scopus 로고
    • Wettability and its influence on graphene nanosheets as electrode material for capacitive deionization
    • B.Jia,, and L.Zou. 2012b. Wettability and its influence on graphene nanosheets as electrode material for capacitive deionization. Chemical Physics Letters 548:23–28. doi:10.1016/j.cplett.2012.06.016
    • (2012) Chemical Physics Letters , vol.548 , pp. 23-28
    • Jia, B.1    Zou, L.2
  • 19
    • 84865534336 scopus 로고    scopus 로고
    • Application of capacitive deionization (CDI) technology to insulin purification process
    • S.M.Jung,, J.H.Choi, and J.H.Kim. 2012. Application of capacitive deionization (CDI) technology to insulin purification process. Separation and Purification Technology 98:31–35. doi:10.1016/j.seppur.2012.06.005
    • (2012) Separation and Purification Technology , vol.98 , pp. 31-35
    • Jung, S.M.1    Choi, J.H.2    Kim, J.H.3
  • 20
    • 84897958633 scopus 로고    scopus 로고
    • 2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization
    • 2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization. Desalination 342:70–74. doi:10.1016/j.desal.2013.07.016
    • (2014) Desalination , vol.342 , pp. 70-74
    • Kim, C.1    Lee, J.2    Kim, S.3    Yoon, J.4
  • 21
    • 84882749348 scopus 로고    scopus 로고
    • A review on membrane fabrication: Structure, properties and performance relationship
    • B.S.Lalia,, V.Kochkodan, R.Hashaikeh, and N.Hilal. 2013. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326:77–95. doi:10.1016/j.desal.2013.06.016
    • (2013) Desalination , vol.326 , pp. 77-95
    • Lalia, B.S.1    Kochkodan, V.2    Hashaikeh, R.3    Hilal, N.4
  • 22
    • 84923035997 scopus 로고    scopus 로고
    • Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes
    • K.Laxman,, M.T.Z.Myint, M.Al Abri, P.Sathe, S.Dobretsov, and J.Dutta. 2015. Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes. Desalination 362:126–32. doi:10.1016/j.desal.2015.02.010
    • (2015) Desalination , vol.362 , pp. 126-132
    • Laxman, K.1    Myint, M.T.Z.2    Al Abri, M.3    Sathe, P.4    Dobretsov, S.5    Dutta, J.6
  • 23
    • 84920102636 scopus 로고    scopus 로고
    • Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water
    • K.Laxman,, M.T.Z.Myint, R.Khan, T.Pervez, and J.Dutta. 2015. Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water. Desalination 359:64–70. doi:10.1016/j.desal.2014.12.029
    • (2015) Desalination , vol.359 , pp. 64-70
    • Laxman, K.1    Myint, M.T.Z.2    Khan, R.3    Pervez, T.4    Dutta, J.5
  • 24
    • 77953621894 scopus 로고    scopus 로고
    • Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process
    • J.H.Lee,, W.S.Bae, and J.H.Choi. 2010. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination 258:159–63. doi:10.1016/j.desal.2010.03.020
    • (2010) Desalination , vol.258 , pp. 159-163
    • Lee, J.H.1    Bae, W.S.2    Choi, J.H.3
  • 25
    • 84875794658 scopus 로고    scopus 로고
    • 2 nanoparticles for the application of electrosorption process
    • 2 nanoparticles for the application of electrosorption process. Desalination and Water Treatment 51:503–10. doi:10.1080/19443994.2012.714581
    • (2013) Desalination and Water Treatment , vol.51 , pp. 503-510
    • Lee, J.H.1    Choi, J.H.2
  • 26
    • 79951963404 scopus 로고    scopus 로고
    • A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization
    • H.Li,, L.Pan, T.Lu, Y.Zhan, C.Nie, and Z.Sun. 2011. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry 653:40–44. doi:10.1016/j.jelechem.2011.01.012
    • (2011) Journal of Electroanalytical Chemistry , vol.653 , pp. 40-44
    • Li, H.1    Pan, L.2    Lu, T.3    Zhan, Y.4    Nie, C.5    Sun, Z.6
  • 27
    • 84863923965 scopus 로고    scopus 로고
    • Reduced graphene oxide and activated carbon composites for capacitive deionization
    • H.Li,, L.Pan, C.Nie, Y.Liu, and Z.Sun. 2012. Reduced graphene oxide and activated carbon composites for capacitive deionization. Journal of Materials Chemistry 22:15556–61. doi:10.1039/c2jm32207b
    • (2012) Journal of Materials Chemistry , vol.22 , pp. 15556-15561
    • Li, H.1    Pan, L.2    Nie, C.3    Liu, Y.4    Sun, Z.5
  • 28
    • 78449248575 scopus 로고    scopus 로고
    • Novel graphene-like electrodes for capacitive deionization
    • H.Li,, L.Zou, L.Pan, and Z.Sun. 2010. Novel graphene-like electrodes for capacitive deionization. Environmental Science & Technology 44:8692–97. doi:10.1021/es101888j
    • (2010) Environmental Science & Technology , vol.44 , pp. 8692-8697
    • Li, H.1    Zou, L.2    Pan, L.3    Sun, Z.4
  • 31
    • 84919402915 scopus 로고    scopus 로고
    • 3D porous graphene with ultrahigh surface area for microscale capacitive deionization
    • Z.Li,, B.Song, Z.Wu, Z.Lin, Y.Yao, K.-S.Moon, and C.P.Wong. 2015. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energy 11:711–18. doi:10.1016/j.nanoen.2014.11.018
    • (2015) Nano Energy , vol.11 , pp. 711-718
    • Li, Z.1    Song, B.2    Wu, Z.3    Lin, Z.4    Yao, Y.5    Moon, K.-S.6    Wong, C.P.7
  • 32
    • 84911926437 scopus 로고    scopus 로고
    • Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis
    • J.Liu,, M.Lu, J.Yang, J.Cheng, and W.Cai. 2015. Capacitive desalination of ZnO/activated carbon asymmetric capacitor and mechanism analysis. Electrochimica Acta 151:312–18. doi:10.1016/j.electacta.2014.11.023
    • (2015) Electrochimica Acta , vol.151 , pp. 312-318
    • Liu, J.1    Lu, M.2    Yang, J.3    Cheng, J.4    Cai, W.5
  • 33
    • 84929335446 scopus 로고    scopus 로고
    • High performance graphene composite microsphere electrodes for capacitive deionization
    • L.Liu,, L.Liao, Q.Meng, and B.Cao. 2015. High performance graphene composite microsphere electrodes for capacitive deionization. Carbon 90:75–84. doi:10.1016/j.carbon.2015.04.009
    • (2015) Carbon , vol.90 , pp. 75-84
    • Liu, L.1    Liao, L.2    Meng, Q.3    Cao, B.4
  • 34
    • 84911470984 scopus 로고    scopus 로고
    • Porous carbon spheres via microwave-assisted synthesis for capacitive deionization
    • Y.Liu,, L.Pan, T.Chen, X.Xu, T.Lu, Z.Sun, and D.H.C.Chua. 2015. Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochimica Acta 151:489–96. doi:10.1016/j.electacta.2014.11.086
    • (2015) Electrochimica Acta , vol.151 , pp. 489-496
    • Liu, Y.1    Pan, L.2    Chen, T.3    Xu, X.4    Lu, T.5    Sun, Z.6    Chua, D.H.C.7
  • 35
    • 84939193432 scopus 로고    scopus 로고
    • Nitrogen-doped carbon nanorods with excellent capacitive deionization ability
    • Y.Liu,, X.Xu, M.Wang, T.Lu, Z.Sun, and L.Pan. 2015a. Nitrogen-doped carbon nanorods with excellent capacitive deionization ability. Journal of Materials Chemistry A 3:17304–11. doi:10.1039/c5ta03663a
    • (2015) Journal of Materials Chemistry A , vol.3 , pp. 17304-17311
    • Liu, Y.1    Xu, X.2    Wang, M.3    Lu, T.4    Sun, Z.5    Pan, L.6
  • 36
    • 84937572829 scopus 로고    scopus 로고
    • Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization
    • Y.Liu,, X.Xu, M.Wang, T.Lu, Z.Sun, and L.Pan. 2015b. Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chemical Communication 51:12020–23. doi:10.1039/c5cc03999a
    • (2015) Chemical Communication , vol.51 , pp. 12020-12023
    • Liu, Y.1    Xu, X.2    Wang, M.3    Lu, T.4    Sun, Z.5    Pan, L.6
  • 37
    • 33646352984 scopus 로고    scopus 로고
    • Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies
    • C.S.Lu,, H.Chiu, and C.T.Liu. 2006. Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies. Industrial & Engineering Chemistry Research 45 (8):2850–55. doi:10.1021/ie051206 h
    • (2006) Industrial & Engineering Chemistry Research , vol.45 , Issue.8 , pp. 2850-2855
    • Lu, C.S.1    Chiu, H.2    Liu, C.T.3
  • 38
    • 49849093393 scopus 로고    scopus 로고
    • Environmental applications of carbon-based nanomaterials
    • M.S.Mauter,, and M.Elimelech. 2008. Environmental applications of carbon-based nanomaterials. Environmental Science & Technology 42 (16):5843–59. doi:10.1021/es8006904
    • (2008) Environmental Science & Technology , vol.42 , Issue.16 , pp. 5843-5859
    • Mauter, M.S.1    Elimelech, M.2
  • 40
    • 78649643862 scopus 로고    scopus 로고
    • Techno-economic assessment and environmental impacts of desalination technologies
    • T.Mezher,, H.Fath, Z.Abbas, and A.Khaled. 2011. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 266:263–73. doi:10.1016/j.desal.2010.08.035
    • (2011) Desalination , vol.266 , pp. 263-273
    • Mezher, T.1    Fath, H.2    Abbas, Z.3    Khaled, A.4
  • 41
    • 84880243547 scopus 로고    scopus 로고
    • Preparation of chitosan-multiwalled carbon nanotubes blended membranes: Characterization and performance in the separation of sodium and magnesium ions
    • Z.V.P.Murthy,, and M.S.Gaikwad. 2013. Preparation of chitosan-multiwalled carbon nanotubes blended membranes: Characterization and performance in the separation of sodium and magnesium ions. Nanoscale and Microscale Thermophysical Engineering 17:245–62. doi:10.1080/15567265.2013.787571
    • (2013) Nanoscale and Microscale Thermophysical Engineering , vol.17 , pp. 245-262
    • Murthy, Z.V.P.1    Gaikwad, M.S.2
  • 42
    • 84866169743 scopus 로고    scopus 로고
    • Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach
    • M.T.Z.Myint,, and J.Dutta. 2012. Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination 305:24–30. doi:10.1016/j.desal.2012.08.010
    • (2012) Desalination , vol.305 , pp. 24-30
    • Myint, M.T.Z.1    Dutta, J.2
  • 43
    • 78650782606 scopus 로고    scopus 로고
    • Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology
    • S.Nadakatti,, M.Tendulkar, and M.Kadam. 2011. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination 268 (1–3):182–88. doi:10.1016/j.desal.2010.10.020
    • (2011) Desalination , vol.268 , Issue.1-3 , pp. 182-188
    • Nadakatti, S.1    Tendulkar, M.2    Kadam, M.3
  • 44
    • 47049111347 scopus 로고    scopus 로고
    • Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)
    • Y.Oren, 2008. Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 228:10–29. doi:10.1016/j.desal.2007.08.005
    • (2008) Desalination , vol.228 , pp. 10-29
    • Oren, Y.1
  • 45
    • 58149158071 scopus 로고    scopus 로고
    • Adsorption mechanisms of organic chemicals on carbon nanotubes
    • B.Pan,, and B.S.Xing. 2008. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology 42 (24):9005–13. doi:10.1021/es801777n
    • (2008) Environmental Science & Technology , vol.42 , Issue.24 , pp. 9005-9013
    • Pan, B.1    Xing, B.S.2
  • 46
    • 84935032510 scopus 로고    scopus 로고
    • Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization
    • H.Pan,, J.Yang, S.Wang, Z.Xiong, W.Cai, and J.Liu. 2015. Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization. Journal of Materials Chemistry A 3:13827–34. doi:10.1039/c5ta02954f
    • (2015) Journal of Materials Chemistry A , vol.3 , pp. 13827-13834
    • Pan, H.1    Yang, J.2    Wang, S.3    Xiong, Z.4    Cai, W.5    Liu, J.6
  • 47
    • 84863362675 scopus 로고    scopus 로고
    • High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization
    • Z.Peng,, D.Zhang, L.Shi, and T.Yan. 2012. High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. Journal of Materials Chemistry 22: 6603–12. doi:10.1039/c2jm16735b
    • (2012) Journal of Materials Chemistry , vol.22 , pp. 6603-6612
    • Peng, Z.1    Zhang, D.2    Shi, L.3    Yan, T.4
  • 48
    • 84877809083 scopus 로고    scopus 로고
    • Review on the science and technology of water desalination by capacitive deionization
    • S.Porada,, R.Zhao, A.van der Wal, V.Presser, and P.M.Biesheuvel. 2013. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 58: 1388–442. doi:10.1016/j. pmatsci.2013.03.005
    • (2013) Progress in Materials Science , vol.58 , pp. 1388-1442
    • Porada, S.1    Zhao, R.2    van der Wal, A.3    Presser, V.4    Biesheuvel, P.M.5
  • 49
    • 33845297697 scopus 로고    scopus 로고
    • Nonconventional water resources and opportunities for water augmentation to achieve food security in water scarce countries
    • M.Qadir,, B.R.Sharma, A.Bruggeman, R.Choukr-Allah, and F.Karajeh. 2007. Nonconventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agricultural Water Management 87:2–22. doi:10.1016/j.agwat.2006.03.018
    • (2007) Agricultural Water Management , vol.87 , pp. 2-22
    • Qadir, M.1    Sharma, B.R.2    Bruggeman, A.3    Choukr-Allah, R.4    Karajeh, F.5
  • 51
    • 0037398484 scopus 로고    scopus 로고
    • Improvement in capacitive deionization function of activated carbon cloth by titania modification
    • M.W.Ryoo,, and G.Seo. 2003. Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Research 37:1527–34. doi:10.1016/s0043-1354(02)00531-6
    • (2003) Water Research , vol.37 , pp. 1527-1534
    • Ryoo, M.W.1    Seo, G.2
  • 52
    • 77949315317 scopus 로고    scopus 로고
    • Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications
    • S.J.Seo,, H.Jeon, J.K.Lee, G.Y.Kim, D.Park, H.Nojima, J.Lee, and S.H.Moon. 2010. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research 44 (7):2267–75. doi:10.1016/j.watres.2009.10.020
    • (2010) Water Research , vol.44 , Issue.7 , pp. 2267-2275
    • Seo, S.J.1    Jeon, H.2    Lee, J.K.3    Kim, G.Y.4    Park, D.5    Nojima, H.6    Lee, J.7    Moon, S.H.8
  • 53
    • 48449090154 scopus 로고    scopus 로고
    • Synthesis of water soluble graphene
    • Y.Si,, and E.T.Samulski. 2008. Synthesis of water soluble graphene. Nano Letters 8:1679–82. doi:10.1021/nl080604 h
    • (2008) Nano Letters , vol.8 , pp. 1679-1682
    • Si, Y.1    Samulski, E.T.2
  • 54
    • 77957974773 scopus 로고    scopus 로고
    • Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens
    • J.Theron,, T.E.Cloete, and M.de Kwaadsteniet. 2010. Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens. Critical Reviews in Microbiology 36 (4):318–39. doi:10.3109/1040841x.2010.489892
    • (2010) Critical Reviews in Microbiology , vol.36 , Issue.4 , pp. 318-339
    • Theron, J.1    Cloete, T.E.2    de Kwaadsteniet, M.3
  • 55
    • 77952495824 scopus 로고    scopus 로고
    • Nanomaterial enabled biosensors for pathogen monitoring—A review
    • P.J.Vikesland,, and K.R.Wigginton. 2010. Nanomaterial enabled biosensors for pathogen monitoring—A review. Environmental Science & Technology 44 (10):3656–69. doi:10.1021/es903704z
    • (2010) Environmental Science & Technology , vol.44 , Issue.10 , pp. 3656-3669
    • Vikesland, P.J.1    Wigginton, K.R.2
  • 56
    • 84862804747 scopus 로고    scopus 로고
    • Activated carbon nanofiber webs made by electrospinning for capacitive deionization
    • G.Wang,, C.Pan, L.Wang, Q.Dong, C.Yu, Z.Zhao, and J.Qiu. 2012. Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochimica Acta 69:65–70. doi:10.1016/j.electacta.2012.02.066
    • (2012) Electrochimica Acta , vol.69 , pp. 65-70
    • Wang, G.1    Pan, C.2    Wang, L.3    Dong, Q.4    Yu, C.5    Zhao, Z.6    Qiu, J.7
  • 57
    • 84884159989 scopus 로고    scopus 로고
    • Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization
    • H.Wang,, D.Zhang, T.Yan, X.Wen, J.Zhang, L.Shi, and Q.Zhong. 2013. Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A 1:11778–89. doi:10.1039/c3ta11926b
    • (2013) Journal of Materials Chemistry A , vol.1 , pp. 11778-11789
    • Wang, H.1    Zhang, D.2    Yan, T.3    Wen, X.4    Zhang, J.5    Shi, L.6    Zhong, Q.7
  • 59
    • 84862838378 scopus 로고    scopus 로고
    • Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material
    • Z.Wang,, B.Dou, L.Zheng, G.Zhang, Z.Liu, and Z.Hao. 2012. Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. Desalination 299:96–102. doi:10.1016/j.desal.2012.05.028
    • (2012) Desalination , vol.299 , pp. 96-102
    • Wang, Z.1    Dou, B.2    Zheng, L.3    Zhang, G.4    Liu, Z.5    Hao, Z.6
  • 60
    • 27944461422 scopus 로고    scopus 로고
    • Capacitive deionization technology™: An alternative desalination solution
    • T.J.Welgemoed,, and C.F.Schutte. 2005. Capacitive deionization technology™: An alternative desalination solution. Desalination 183 (1–3):327–40. doi:10.1016/j.desal.2005.02.054
    • (2005) Desalination , vol.183 , Issue.1-3 , pp. 327-340
    • Welgemoed, T.J.1    Schutte, C.F.2
  • 61
    • 84884343161 scopus 로고    scopus 로고
    • Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization
    • X.Wen,, D.Zhang, T.Yan, J.Zhang, and L.Shi. 2013. Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. Journal of Materials Chemistry A 1:12334–44. doi:10.1039/c3ta12683 h
    • (2013) Journal of Materials Chemistry A , vol.1 , pp. 12334-12344
    • Wen, X.1    Zhang, D.2    Yan, T.3    Zhang, J.4    Shi, L.5
  • 62
    • 84913580228 scopus 로고    scopus 로고
    • Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization
    • Y.Wimalasiri,, M.Mossad, and L.Zou. 2015. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination 357:178–88. doi:10.1016/j.desal.2014.11.015
    • (2015) Desalination , vol.357 , pp. 178-188
    • Wimalasiri, Y.1    Mossad, M.2    Zou, L.3
  • 63
    • 84877696848 scopus 로고    scopus 로고
    • Carbon nanotube/graphene composite for enhanced capacitive deionization performance
    • Y.Wimalasiri,, and L.Zou. 2013. Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–71. doi:10.1016/j.carbon.2013.03.040
    • (2013) Carbon , vol.59 , pp. 464-471
    • Wimalasiri, Y.1    Zou, L.2
  • 64
  • 65
    • 84934893933 scopus 로고    scopus 로고
    • Rational design and fabrication of graphene/ carbon nanotubes hybrid sponge for high-performance capacitive deionization
    • X.Xu,, Y.Liu, T.Lu, Z.Sun, D.H.C.Chua, and L.Pan. 2015. Rational design and fabrication of graphene/ carbon nanotubes hybrid sponge for high-performance capacitive deionization. Journal of Materials Chemistry A 3:13418–25. doi:10.1039/c5ta01889 g
    • (2015) Journal of Materials Chemistry A , vol.3 , pp. 13418-13425
    • Xu, X.1    Liu, Y.2    Lu, T.3    Sun, Z.4    Chua, D.H.C.5    Pan, L.6
  • 66
    • 84921458551 scopus 로고    scopus 로고
    • Enhanced capacitive deionization performance of graphene by nitrogen doping
    • X.Xu,, L.Pan, Y.Liu, T.Lu, and Z.Sun. 2015. Enhanced capacitive deionization performance of graphene by nitrogen doping. Journal of Colloid and Interface Science 445:143–50. doi:10.1016/j.jcis.2015.01.003
    • (2015) Journal of Colloid and Interface Science , vol.445 , pp. 143-150
    • Xu, X.1    Pan, L.2    Liu, Y.3    Lu, T.4    Sun, Z.5
  • 67
    • 84931280179 scopus 로고    scopus 로고
    • Facile synthesis of novel graphene sponge for high performance capacitive deionization
    • X.Xu,, L.Pan, Y.Liu, T.Lu, Z.Sun, and D.H.C.Chua. 2015. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific Reports 5:8458. doi:10.1038/srep08458
    • (2015) Scientific Reports , vol.5 , pp. 8458
    • Xu, X.1    Pan, L.2    Liu, Y.3    Lu, T.4    Sun, Z.5    Chua, D.H.C.6
  • 68
    • 84931281566 scopus 로고    scopus 로고
    • Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance
    • X.Xu,, Z.Sun, D.H.C.Chua, and L.Pan. 2015. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Scientific Reports 5:11225. doi:10.1038/srep11225
    • (2015) Scientific Reports , vol.5 , pp. 11225
    • Xu, X.1    Sun, Z.2    Chua, D.H.C.3    Pan, L.4
  • 69
    • 79959511004 scopus 로고    scopus 로고
    • 2/nanoporous carbon composite electrodes in capacitive deionization technology
    • 2/nanoporous carbon composite electrodes in capacitive deionization technology. Desalination 276:199–206. doi:10.1016/j.desal.2011.03.044
    • (2011) Desalination , vol.276 , pp. 199-206
    • Yang, J.1    Zou, L.2    Song, H.3    Hao, Z.4
  • 70
    • 84856026325 scopus 로고    scopus 로고
    • 2 in the membrane capacitive deionization
    • 2 in the membrane capacitive deionization. Desalination 286:108–14. doi:10.1016/j.desal.2011.11.013
    • (2012) Desalination , vol.286 , pp. 108-114
    • Yang, J.1    Zou, L.2    Song, H.3
  • 71
    • 84903538969 scopus 로고    scopus 로고
    • Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance
    • Z.Y.Yang,, L.J.Jin, G.Q.Lu, Q.Q.Xiao, Y.X.Zhang, L.Jing, X.X.Zhan, Y.M.Yan, and K.N.Sun. 2014. Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Advanced Functional Materials 24 (25):3917–25. doi:10.1002/adfm.201304091
    • (2014) Advanced Functional Materials , vol.24 , Issue.25 , pp. 3917-3925
    • Yang, Z.Y.1    Jin, L.J.2    Lu, G.Q.3    Xiao, Q.Q.4    Zhang, Y.X.5    Jing, L.6    Zhan, X.X.7    Yan, Y.M.8    Sun, K.N.9
  • 72
    • 84887918905 scopus 로고    scopus 로고
    • Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water
    • H.Yin,, S.Zhao, J.Wan, H.Tang, L.Chang, L.He, H.Zhao, Y.Gao, and Z.Tang. 2013. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Advanced Materials 25:6270–76. doi:10.1002/adma.201302223
    • (2013) Advanced Materials , vol.25 , pp. 6270-6276
    • Yin, H.1    Zhao, S.2    Wan, J.3    Tang, H.4    Chang, L.5    He, L.6    Zhao, H.7    Gao, Y.8    Tang, Z.9
  • 73
    • 84862791550 scopus 로고    scopus 로고
    • Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water
    • L.Yuan,, X.Yang, P.Liang, L.Wang, Z.H.Huang, J.Wei, and X.Huang. 2012. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresource Technology 110:735–38. doi:10.1016/j.biortech.2012.01.137
    • (2012) Bioresource Technology , vol.110 , pp. 735-738
    • Yuan, L.1    Yang, X.2    Liang, P.3    Wang, L.4    Huang, Z.H.5    Wei, J.6    Huang, X.7
  • 74
    • 84863689248 scopus 로고    scopus 로고
    • Enhanced capacitive deionization performance of graphene/carbon nanotube composites
    • D.Zhang,, T.Yan, L.Shi, Z.Peng, X.Wen, and J.Zhang. 2012. Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry 22:14696–704. doi:10.1039/c2jm31393f
    • (2012) Journal of Materials Chemistry , vol.22 , pp. 14696-14704
    • Zhang, D.1    Yan, T.2    Shi, L.3    Peng, Z.4    Wen, X.5    Zhang, J.6
  • 75
    • 34548720615 scopus 로고    scopus 로고
    • Membrane and other treatment technologies –pros and cons
    • Gu B., Coates J., (eds), New York: Springer
    • P.Zhou,, G.M.Brown, and B.Gu. 2006. Membrane and other treatment technologies –pros and cons. In Perchlorate, eds. B.Gu, and J.Coates 389–404. New York: Springer.
    • (2006) Perchlorate , pp. 389-404
    • Zhou, P.1    Brown, G.M.2    Gu, B.3
  • 76
    • 59349116749 scopus 로고    scopus 로고
    • Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal
    • K.Zodrow,, L.Brunet, S.Mahendra, D.Li, A.Zhang, Q.L.Li, and P.J.J.Alvarez. 2009. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research 43 (3):715–23. doi:10.1016/j.watres.2008.11.014
    • (2009) Water Research , vol.43 , Issue.3 , pp. 715-723
    • Zodrow, K.1    Brunet, L.2    Mahendra, S.3    Li, D.4    Zhang, A.5    Li, Q.L.6    Alvarez, P.J.J.7
  • 77
    • 41949127300 scopus 로고    scopus 로고
    • Using mesoporous carbon electrodes for brackish water desalination
    • L.Zou,, L.X.Li, H.H.Song, and G.Morris. 2008. Using mesoporous carbon electrodes for brackish water desalination. Water Research 42:2340–48. doi:10.1016/j.watres.2007.12.022
    • (2008) Water Research , vol.42 , pp. 2340-2348
    • Zou, L.1    Li, L.X.2    Song, H.H.3    Morris, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.