-
1
-
-
0003851729
-
-
Dover, New York
-
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1964.
-
(1964)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
-
-
Abramowitz, M.1
Stegun, I.A.2
-
2
-
-
0000812818
-
On the short-wave asymptotic behaviour of the Green's function for the Helmholtz equation
-
V. M. Babich, On the short-wave asymptotic behaviour of the Green's function for the Helmholtz equation, Mat. Sb., 65 (1964), pp. 576-630.
-
(1964)
Mat. Sb.
, vol.65
, pp. 576-630
-
-
Babich, V.M.1
-
3
-
-
84975043526
-
On the asymptotics of the Green's functions of certain wave problems. I. Stationary case
-
V. M. Babich, On the asymptotics of the Green's functions of certain wave problems. I. Stationary case, Mat. Sb. (N.S.), 86 (1971), pp. 513-533.
-
(1971)
Mat. Sb. (N.S.)
, vol.86
, pp. 513-533
-
-
Babich, V.M.1
-
4
-
-
0004313297
-
Asymptotic Methods in Short-Wavelength Diffraction Theory
-
Alpha Science International, Oxford
-
V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory, Alpha Science Series on Wave Phenomena, Alpha Science International, Oxford, 2008.
-
(2008)
Alpha Science Series on Wave Phenomena
-
-
Babich, V.M.1
Buldyrev, V.S.2
-
6
-
-
84988202061
-
Formulation variationnelle espace-temps pour le calcul de la diffraction d'une onde acoustique (I)
-
A. Bamberger and T. Ha Duong, Formulation variationnelle espace-temps pour le calcul de la diffraction d'une onde acoustique (I), Math. Methods Appl. Sci., 8 (1986), pp. 405-435.
-
(1986)
Math. Methods Appl. Sci.
, vol.8
, pp. 405-435
-
-
Bamberger, A.1
Ha Duong, T.2
-
7
-
-
84861402374
-
Stability of the scattering from a large electromagnetic cavity in two dimensions
-
G. Bao, K. Yun, and Z. Zhou, Stability of the scattering from a large electromagnetic cavity in two dimensions, SIAM J. Math. Anal., 44 (2012), pp. 383-404.
-
(2012)
SIAM J. Math. Anal.
, vol.44
, pp. 383-404
-
-
Bao, G.1
Yun, K.2
Zhou, Z.3
-
8
-
-
84882376440
-
Resolvent estimates and local decay of waves on conic manifolds
-
D. Baskin and J. Wunsch, Resolvent estimates and local decay of waves on conic manifolds, J. Differential Geom., 95 (2013), pp. 183-214.
-
(2013)
J. Differential Geom.
, vol.95
, pp. 183-214
-
-
Baskin, D.1
Wunsch, J.2
-
9
-
-
78649846595
-
Condition number estimates for combined potential boundary integral operators in acoustics and their boundary element discretisation
-
T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner, Condition number estimates for combined potential boundary integral operators in acoustics and their boundary element discretisation, Numerical Methods Partial Differential Equations, 27 (2011), pp. 31-69.
-
(2011)
Numerical Methods Partial Differential Equations
, vol.27
, pp. 31-69
-
-
Betcke, T.1
Chandler-Wilde, S.N.2
Graham, I.G.3
Langdon, S.4
Lindner, M.5
-
10
-
-
80052713130
-
Numerical estimation of coercivity constants for boundary integral operators in acoustic scattering
-
T. Betcke and E. A. Spence, Numerical estimation of coercivity constants for boundary integral operators in acoustic scattering, SIAM J. Numer. Anal., 49 (2011), pp. 1572-1601.
-
(2011)
SIAM J. Numer. Anal.
, vol.49
, pp. 1572-1601
-
-
Betcke, T.1
Spence, E.A.2
-
11
-
-
84861481644
-
Numericalasymptotic boundary integral methods in high-frequency acoustic scattering
-
S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and E. A. Spence, Numericalasymptotic boundary integral methods in high-frequency acoustic scattering, Acta Numer., 21 (2012), pp. 89-305.
-
(2012)
Acta Numer.
, vol.21
, pp. 89-305
-
-
Chandler-Wilde, S.N.1
Graham, I.G.2
Langdon, S.3
Spence, E.A.4
-
12
-
-
52649128278
-
Wave-number-explicit bounds in time-harmonic scattering
-
S. N. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time-harmonic scattering, SIAM J. Math. Anal., 39 (2008), pp. 1428-1455.
-
(2008)
SIAM J. Math. Anal.
, vol.39
, pp. 1428-1455
-
-
Chandler-Wilde, S.N.1
Monk, P.2
-
14
-
-
0000438610
-
Boundary integral operators on Lipschitz domains: Elementary results
-
M. Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal., 19 (1988), pp. 613-626.
-
(1988)
SIAM J. Math. Anal.
, vol.19
, pp. 613-626
-
-
Costabel, M.1
-
15
-
-
32644451827
-
Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations
-
P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations, Math. Models Meth. Appl. Sci., 16 (2006), pp. 139-160.
-
(2006)
Math. Models Meth Appl. Sci.
, vol.16
, pp. 139-160
-
-
Cummings, P.1
Feng, X.2
-
16
-
-
84975041584
-
Fast algorithms for high frequency wave propagation
-
Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds Springer-Verlag, Berlin
-
B. Engquist and L. Ying, Fast algorithms for high frequency wave propagation, in Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds., Lect. Notes Comput. Sci. Eng. 83, Springer-Verlag, Berlin, 2012, pp. 127-161.
-
(2012)
Lect. Notes Comput. Sci. Eng.
, vol.83
, pp. 127-161
-
-
Engquist, B.1
Ying, L.2
-
17
-
-
85032825915
-
Why it is difficult to solve Helmholtz problems with classical iterative methods
-
Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds Springer-Verlag, Berlin
-
O. G. Ernst and M. J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, in Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds., Lect. Notes Comput. Sci. Eng. 83, Springer-Verlag, Berlin, 2012, pp. 325-363.
-
(2012)
Lect. Notes Comput. Sci. Eng.
, vol.83
, pp. 325-363
-
-
Ernst, O.G.1
Gander, M.J.2
-
18
-
-
84975041576
-
On stability of discretizations of the Helmholtz equation
-
Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds. Springer-Verlag, Berlin
-
S. Esterhazy and J. M. Melenk, On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, eds., Lect. Notes Comput. Sci. Eng. 83, Springer-Verlag, Berlin, 2012, pp. 285-324.
-
(2012)
Lect. Notes Comput. Sci. Eng.
, vol.83
, pp. 285-324
-
-
Esterhazy, S.1
Melenk, J.M.2
-
20
-
-
84968475590
-
An elliptic regularity coefficient estimate for a problem arising from a frequency domain treatment of waves
-
X. Feng and D. Sheen, An elliptic regularity coefficient estimate for a problem arising from a frequency domain treatment of waves, Trans. Amer. Math. Soc., 346 (1994), pp. 475-488.
-
(1994)
Trans. Amer. Math. Soc.
, vol.346
, pp. 475-488
-
-
Feng, X.1
Sheen, D.2
-
21
-
-
84981754139
-
High-frequency scattering by finite convex regions
-
R. Grimshaw, High-frequency scattering by finite convex regions, Comm. Pure Appl. Math., 19 (1966), pp. 167-198.
-
(1966)
Comm. Pure Appl. Math.
, vol.19
, pp. 167-198
-
-
Grimshaw, R.1
-
23
-
-
84975034285
-
Semiclassical single and double layer potentials: Boundedness and sharpness
-
arXiv:1403.6576
-
X. Han and M. Tacy, Semiclassical single and double layer potentials: Boundedness and sharpness, preprint, arXiv:1403.6576, 2014.
-
(2014)
Preprint
-
-
Han, X.1
Tacy, M.2
-
24
-
-
35349016240
-
Stability estimates for a class of Helmholtz problems
-
U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Commun. Math. Sci, 5 (2007), pp. 665-678.
-
(2007)
Commun. Math. Sci.
, vol.5
, pp. 665-678
-
-
Hetmaniuk, U.1
-
25
-
-
82155186224
-
Stability results for the time-harmonic Maxwell equations with impedance boundary conditions
-
R. Hiptmair, A. Moiola, and I. Perugia, Stability results for the time-harmonic Maxwell equations with impedance boundary conditions, Math. Models Methods Appl. Sci., 21 (2011), pp. 2263-2287.
-
(2011)
Math. Models Methods Appl. Sci.
, vol.21
, pp. 2263-2287
-
-
Hiptmair, R.1
Moiola, A.2
Perugia, I.3
-
27
-
-
77949347592
-
Spectral properties of the Dirichlet-to-Neumann operator for the exterior Helmholtz problem and its applications to scattering theory
-
E. Lakshtanov, Spectral properties of the Dirichlet-to-Neumann operator for the exterior Helmholtz problem and its applications to scattering theory, J. Phys. A, 43 (2010), 125204.
-
(2010)
J. Phys. A.
, vol.43
, pp. 125204
-
-
Lakshtanov, E.1
-
28
-
-
84866164373
-
A priori estimates for high frequency scattering by obstacles of arbitrary shape
-
E. Lakshtanov and B. Vainberg, A priori estimates for high frequency scattering by obstacles of arbitrary shape, Comm. Partial Differential Equations, 37 (2012), pp. 1789-1804.
-
(2012)
Comm. Partial Differential Equations
, vol.37
, pp. 1789-1804
-
-
Lakshtanov, E.1
Vainberg, B.2
-
29
-
-
67349104182
-
Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves
-
A. R. Laliena and F. J. Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves, Numer. Math., 112 (2009), pp. 637-678.
-
(2009)
Numer. Math.
, vol.112
, pp. 637-678
-
-
Laliena, A.R.1
Sayas, F.J.2
-
30
-
-
84875072624
-
Legendre spectral Galerkin method for electromagnetic scattering from large cavities
-
H. Li, H. Ma, and W. Sun, Legendre spectral Galerkin method for electromagnetic scattering from large cavities, SIAM J. Numer. Anal., 51 (2013), pp. 353-376.
-
(2013)
SIAM J. Numer. Anal.
, vol.51
, pp. 353-376
-
-
Li, H.1
Ma, H.2
Sun, W.3
-
31
-
-
84856032269
-
Melenk, Wavenumber-explicit hp-BEM for high frequency scattering
-
M. Löhndorf and J. M. Melenk, Wavenumber-explicit hp-BEM for high frequency scattering, SIAM J. Numer. Anal., 49 (2011), pp. 2340-2363.
-
(2011)
SIAM J. Numer. Anal.
, vol.49
, pp. 2340-2363
-
-
Löhndorf, M.1
Melenk, J.M.2
-
33
-
-
0003923573
-
-
Ph.D. thesis, The University of Maryland, College Park, MD
-
J. M. Melenk, On Generalized Finite Element Methods, Ph.D. thesis, The University of Maryland, College Park, MD, 1995.
-
(1995)
On Generalized Finite Element Methods
-
-
Melenk, J.M.1
-
34
-
-
84866067485
-
Mapping properties of combined field Helmholtz boundary integral operators
-
J. M. Melenk, Mapping properties of combined field Helmholtz boundary integral operators, SIAM J. Math. Anal., 44 (2012), pp. 2599-2636.
-
(2012)
SIAM J. Math. Anal.
, vol.44
, pp. 2599-2636
-
-
Melenk, J.M.1
-
35
-
-
77956609030
-
Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions
-
J. M. Melenk and S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp, 79 (2010), pp. 1871-1914.
-
(2010)
Math. Comp.
, vol.79
, pp. 1871-1914
-
-
Melenk, J.M.1
Sauter, S.2
-
36
-
-
84980157470
-
Singularities of boundary value problemsi
-
R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math., 31 (1978), pp. 593-617.
-
(1978)
Comm. Pure Appl. Math.
, vol.31
, pp. 593-617
-
-
Melrose, R.B.1
Sjöstrand, J.2
-
38
-
-
48549089350
-
Propagation of singularities for the wave equation on edge manifolds
-
R. B. Melrose, A. Vasy, and J. Wunsch, Propagation of singularities for the wave equation on edge manifolds, Duke Math. J., 144 (2008), pp. 109-193.
-
(2008)
Duke Math. J.
, vol.144
, pp. 109-193
-
-
Melrose, R.B.1
Vasy, A.2
Wunsch, J.3
-
39
-
-
84899733213
-
Diffraction of singularities for the wave equation on manifolds with corners, Astérisque
-
R. B. Melrose, A. Vasy, and J. Wunsch, Diffraction of singularities for the wave equation on manifolds with corners, Astérisque, J. Differential Geom., 351 (2013).
-
(2013)
J. Differential Geom.
, vol.351
-
-
Melrose, R.B.1
Vasy, A.2
Wunsch, J.3
-
40
-
-
2442542351
-
Propagation of singularities for the wave equation on conic manifolds
-
R. B. Melrose and J. Wunsch, Propagation of singularities for the wave equation on conic manifolds, Invent. Math., 156 (2004), pp. 235-299.
-
(2004)
Invent. Math.
, vol.156
, pp. 235-299
-
-
Melrose, R.B.1
Wunsch, J.2
-
41
-
-
84879051890
-
Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems
-
Ph.D. thesis ETH, Zürich
-
A. Moiola, Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems, Ph.D. thesis, Seminar for Applied Mathematics, ETH, Zürich, 2011; also available at http://e-collection.library.ethz.ch/view/eth:4515.
-
(2011)
Seminar for Applied Mathematics
-
-
Moiola, A.1
-
42
-
-
84901342997
-
Is the Helmholtz equation really sign-indefinite
-
A. Moiola and E. A. Spence, Is the Helmholtz equation really sign-indefinite?, SIAM Rev., 56 (2014), pp. 274-312.
-
(2014)
SIAM Rev.
, vol.56
, pp. 274-312
-
-
Moiola, A.1
Spence, E.A.2
-
43
-
-
84980087895
-
The decay of solutions of the exterior initial-boundary value problem for the wave equation
-
C. S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math., 14 (1961), pp. 561-568.
-
(1961)
Comm. Pure Appl. Math.
, vol.14
, pp. 561-568
-
-
Morawetz, C.S.1
-
44
-
-
84980131041
-
Decay for solutions of the exterior problem for the wave equation
-
C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), pp. 229-264.
-
(1975)
Comm. Pure Appl. Math.
, vol.28
, pp. 229-264
-
-
Morawetz, C.S.1
-
45
-
-
84981760477
-
An inequality for the reduced wave operator and the justification of geometrical optics
-
C. S. Morawetz and D. Ludwig, An inequality for the reduced wave operator and the justification of geometrical optics, Comm. Pure Appl. Math., 21 (1968), pp. 187-203.
-
(1968)
Comm. Pure Appl. Math.
, vol.21
, pp. 187-203
-
-
Morawetz, C.S.1
Ludwig, D.2
-
46
-
-
84980140132
-
Decay of solutions of the wave equation outside nontrapping obstacles
-
C. S. Morawetz, J. V. Ralston, and W. A. Strauss, Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math., 30 (1977), pp. 447-508.
-
(1977)
Comm. Pure Appl. Math.
, vol.30
, pp. 447-508
-
-
Morawetz, C.S.1
Ralston, J.V.2
Strauss, W.A.3
-
49
-
-
84975067737
-
-
NIST Digital Library of Mathematical Functions
-
NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/ (2013).
-
(2013)
-
-
-
50
-
-
0000494186
-
Darstellung der eigenwerte von Δ u + λ u = 0 durch ein randintegral
-
F. Rellich, Darstellung der eigenwerte von Δ u + λ u = 0 durch ein randintegral, Math. Z., 46 (1940), pp. 635-636.
-
(1940)
Math. Z.
, vol.46
, pp. 635-636
-
-
Rellich, F.1
-
52
-
-
84975088386
-
Retarded potentials and time domain boundary integral equations: A road-map
-
F. J. Sayas, Retarded potentials and time domain boundary integral equations: A road-map, preprint, (2013).
-
(2013)
Preprint
-
-
Sayas, F.J.1
-
53
-
-
84975082755
-
Bounding acoustic layer potentials via oscillatory integral techniques
-
E. A. Spence, Bounding Acoustic Layer Potentials via Oscillatory Integral Techniques, preprint, 2013.
-
(2013)
Preprint
-
-
Spence, E.A.1
-
54
-
-
84992752413
-
When all else fails, integrate by parts: An overview of new and old variational formulations for linear elliptic PDEs
-
Unified Transform Method for Boundary Value Problems: Applications and Advances, A. S. Fokas and B. Pelloni, eds Philadelphia, 2014, to appear
-
E. A. Spence, When all else fails, integrate by parts: An overview of new and old variational formulations for linear elliptic PDEs, in Unified Transform Method for Boundary Value Problems: Applications and Advances, A. S. Fokas and B. Pelloni, eds., SIAM, Philadelphia, 2014, to appear.
-
SIAM
-
-
Spence, E.A.1
-
56
-
-
84975960826
-
2 )φ = 0
-
F. Ursell, On the short-wave asymptotic theory of the wave equation (∇ 2 + k2 )φ = 0, Proc. Cambridge Philos. Soc., 53 (1957), pp. 115-133.
-
(1957)
Proc. Cambridge Philos. Soc.
, vol.53
, pp. 115-133
-
-
Ursell, F.1
-
57
-
-
84974159397
-
On the rigorous foundation of short-wave asymptotics
-
F. Ursell, On the rigorous foundation of short-wave asymptotics, Proc. Cambridge Philos. Soc., 62 (1966), pp. 227-244.
-
(1966)
Proc. Cambridge Philos. Soc.
, vol.62
, pp. 227-244
-
-
Ursell, F.1
-
58
-
-
84957156702
-
On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as t?∞ of solutions of non-stationary problems
-
B. R. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as t ?∞ of solutions of non-stationary problems, Russian Math. Surveys, 30 (1975), pp. 1-58.
-
(1975)
Russian Math. Surveys
, vol.30
, pp. 1-58
-
-
Vainberg, B.R.1
-
59
-
-
70350284234
-
Propagation of singularities for the wave equation on manifolds with corners
-
A. Vasy, Propagation of singularities for the wave equation on manifolds with corners, Ann. of Math., 168 (2008), pp. 749-812.
-
(2008)
Ann. of Math.
, vol.168
, pp. 749-812
-
-
Vasy, A.1
|