-
1
-
-
33750458683
-
Powering the planet: Chemical challenges in solar energy utilization
-
Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
2
-
-
84896521395
-
Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting
-
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7787-7812
-
-
Ran, J.R.1
Zhang, J.2
Yu, J.G.3
Jaroniec, M.4
Qiao, S.Z.5
-
3
-
-
84874461329
-
Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
-
Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 2294-2320
-
-
Osterloh, F.E.1
-
4
-
-
75649098165
-
Semiconductor nanowires for energy conversion
-
Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527–546.
-
(2010)
Chem. Rev.
, vol.110
, pp. 527-546
-
-
Hochbaum, A.I.1
Yang, P.D.2
-
5
-
-
33748771497
-
x) solid solution for overall water splitting by co-loading Cr and another transition metal
-
x) solid solution for overall water splitting by co-loading Cr and another transition metal. J. Catal. 2006, 243, 303–308.
-
(2006)
J. Catal.
, vol.243
, pp. 303-308
-
-
Maeda, K.1
Teramura, K.2
Saito, N.3
Inoue, Y.4
Domen, K.5
-
6
-
-
33645674689
-
x) for photocatalytic overall water splitting
-
x) for photocatalytic overall water splitting. J. Phys. Chem. B 2006, 110, 4500–4501.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 4500-4501
-
-
Teramura, K.1
Maeda, K.2
Saito, T.3
Takata, T.4
Saito, N.5
Inoue, Y.6
Domen, K.7
-
7
-
-
0035902363
-
3 (A = Li, Na, and K)
-
3 (A = Li, Na, and K). J. Phys. Chem. B 2001, 105, 4285–4292.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 4285-4292
-
-
Kato, H.1
Kudo, A.2
-
8
-
-
33750804271
-
Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions
-
Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfac. Electrochem. 1972, 39, 163–184.
-
(1972)
J. Electroanal. Chem. Interfac. Electrochem.
, vol.39
, pp. 163-184
-
-
Trasatti, S.1
-
9
-
-
4544235448
-
2 surfaces: Principles, mechanisms, and selected results
-
2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.
-
(1995)
Chem. Rev.
, vol.95
, pp. 735-758
-
-
Linsebigler, A.L.1
Lu, G.Q.2
Yates, J.T.3
-
10
-
-
33645027408
-
Photocatalyst releasing hydrogen from water
-
Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.
-
(2006)
Nature
, vol.440
, pp. 295
-
-
Maeda, K.1
Teramura, K.2
Lu, D.L.3
Takata, T.4
Saito, N.5
Inoue, Y.6
Domen, K.7
-
11
-
-
0037073202
-
5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm)
-
5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 2002, 124, 13547–13553.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 13547-13553
-
-
Ishikawa, A.1
Takata, T.2
Kondo, J.N.3
Hara, M.4
Kobayashi, H.5
Domen, K.6
-
12
-
-
0242669302
-
3 photocatalysts with high crystallinity and surface nanostructure
-
3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 3082-3089
-
-
Kato, H.1
Asakura, K.2
Kudo, A.3
-
13
-
-
0037026793
-
10 configuration
-
10 configuration. J. Phys. Chem. B 2002, 106, 9048–9053.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 9048-9053
-
-
Ikarashi, K.1
Sato, J.2
Kobayashi, H.3
Saito, N.4
Nishiyama, H.5
Inoue, Y.6
-
15
-
-
84938152861
-
2 production
-
2 production. Chem. Commun. 2015, 51, 12556–12559.
-
(2015)
Chem. Commun.
, vol.51
, pp. 12556-12559
-
-
Peng, Y.1
Shang, L.2
Cao, Y.T.3
Waterhouse, G.I.N.4
Zhou, C.5
Bian, T.6
Wu, L.Z.7
Tung, C.H.8
Zhang, T.R.9
-
16
-
-
84906682410
-
Solar-driven Pt modified hollow structured CdS photocatalyst for efficient hydrogen evolution
-
Feng, J.; Liu, J. X.; Wei, G. J.; Zhang, J.; Wang, S. T.; Wang, Z. J.; An, C. H. Solar-driven Pt modified hollow structured CdS photocatalyst for efficient hydrogen evolution. RSC Adv. 2014, 4, 36665–36670.
-
(2014)
RSC Adv.
, vol.4
, pp. 36665-36670
-
-
Feng, J.1
Liu, J.X.2
Wei, G.J.3
Zhang, J.4
Wang, S.T.5
Wang, Z.J.6
An, C.H.7
-
17
-
-
79959234701
-
2 as cocatalyst under visible light irradiation
-
2 as cocatalyst under visible light irradiation. J. Phys. Chem. C 2011, 115, 12202–12208.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 12202-12208
-
-
Zong, X.1
Han, J.F.2
Ma, G.J.3
Yan, H.J.4
Wu, G.P.5
Li, C.6
-
18
-
-
84886416670
-
2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution
-
2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.
-
(2013)
Adv. Mater.
, vol.25
, pp. 5807-5813
-
-
Xie, J.F.1
Zhang, H.2
Li, S.3
Wang, R.X.4
Sun, X.5
Zhou, M.6
Zhou, J.F.7
Lou, X.W.8
Xie, Y.9
-
20
-
-
84880372807
-
2 nanosheets
-
2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10274-10277
-
-
Lukowski, M.A.1
Daniel, A.S.2
Meng, F.3
Forticaux, A.4
Li, L.S.5
Jin, S.6
-
21
-
-
80054036548
-
2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials
-
2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.
-
(2011)
Nano Lett.
, vol.11
, pp. 4168-4175
-
-
Chen, Z.B.1
Cummins, D.2
Reinecke, B.N.3
Clark, E.4
Sunkara, M.K.5
Jaramillo, T.F.6
-
22
-
-
84873204491
-
Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode
-
Wang, T. Y.; Liu, L.; Zhu, Z. W.; Papakonstantinou, P.; Hu, J. B.; Liu, H. Y.; Li, M. X. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 2013, 6, 625–633.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 625-633
-
-
Wang, T.Y.1
Liu, L.2
Zhu, Z.W.3
Papakonstantinou, P.4
Hu, J.B.5
Liu, H.Y.6
Li, M.X.7
-
23
-
-
84875294732
-
Layered nanojunctions for hydrogen-evolution catalysis
-
Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621–3625.
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 3621-3625
-
-
Hou, Y.D.1
Laursen, A.B.2
Zhang, J.S.3
Zhang, G.G.4
Zhu, Y.S.5
Wang, X.C.6
Dahl, S.7
Chorkendorff, I.8
-
24
-
-
84880386732
-
Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide
-
Meng, F.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 2013, 135, 10286–10289.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10286-10289
-
-
Meng, F.1
Li, J.T.2
Cushing, S.K.3
Zhi, M.J.4
Wu, N.Q.5
-
25
-
-
34447326950
-
2 nanocatalysts
-
2 nanocatalysts. Science 2007, 317, 100–102.
-
(2007)
Science
, vol.317
, pp. 100-102
-
-
Jaramillo, T.F.1
Jørgensen, K.P.2
Bonde, J.3
Nielsen, J.H.4
Horch, S.5
Chorkendorff, I.6
-
26
-
-
84873335713
-
Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams
-
Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.
-
(2013)
Adv. Mater.
, vol.25
, pp. 756-760
-
-
Chang, Y.H.1
Lin, C.T.2
Chen, T.Y.3
Hsu, C.L.4
Lee, Y.H.5
Zhang, W.J.6
Wei, K.H.7
Li, L.J.8
-
27
-
-
84866103921
-
Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity
-
Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923.
-
(2012)
ACS Catal.
, vol.2
, pp. 1916-1923
-
-
Benck, J.D.1
Chen, Z.B.2
Kuritzky, L.Y.3
Forman, A.J.4
Jaramillo, T.F.5
-
28
-
-
84877637972
-
A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability
-
Laursen, A. B.; Vesborg, P. C. K.; Chorkendorff, I. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. Chem. Commun. 2013, 49, 4965–4967.
-
(2013)
Chem. Commun.
, vol.49
, pp. 4965-4967
-
-
Laursen, A.B.1
Vesborg, P.C.K.2
Chorkendorff, I.3
-
29
-
-
84863012270
-
2 edge site mimic for catalytic hydrogen generation
-
2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.
-
(2012)
Science
, vol.335
, pp. 698-702
-
-
Karunadasa, H.I.1
Montalvo, E.2
Sun, Y.J.3
Majda, M.4
Long, J.R.5
Chang, C.J.6
-
30
-
-
17644368513
-
2 nanoparticles as catalyst for hydrogen evolution
-
2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 5308-5309
-
-
Hinnemann, B.1
Moses, P.G.2
Bonde, J.3
Jørgensen, K.P.4
Nielsen, J.H.5
Horch, S.6
Chorkendorff, I.7
Nørskov, J.K.8
-
32
-
-
84939513355
-
2 over Pt/CdS nanoplates under sunlight illumination
-
2 over Pt/CdS nanoplates under sunlight illumination. Chem. Eng. J. 2016, 283, 351–357.
-
(2016)
Chem. Eng. J.
, vol.283
, pp. 351-357
-
-
Feng, J.1
An, C.H.2
Dai, L.X.3
Liu, J.X.4
Wei, G.J.5
Bai, S.6
Zhang, J.7
Xiong, Y.J.8
-
34
-
-
22144464105
-
2, NiMos, and CoMos: Mechanism, kinetics, and vibrational frequencies
-
2, NiMos, and CoMos: Mechanism, kinetics, and vibrational frequencies. J. Catal. 2005, 233, 411–421.
-
(2005)
J. Catal.
, vol.233
, pp. 411-421
-
-
Sun, M.Y.1
Nelson, A.E.2
Adjaye, J.3
-
35
-
-
34648816711
-
Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production
-
Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280–13287.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 13280-13287
-
-
Jang, J.S.1
Joshi, U.A.2
Lee, J.S.3
-
36
-
-
84937728340
-
One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution
-
Chen, J.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. 2015, 127, 1226–1230.
-
(2015)
Angew. Chem.
, vol.127
, pp. 1226-1230
-
-
Chen, J.1
Wu, X.J.2
Yin, L.S.3
Li, B.4
Hong, X.5
Fan, Z.X.6
Chen, B.7
Xue, C.8
Zhang, H.9
-
37
-
-
84889264336
-
2 ultrathin nanosheets for efficient hydrogen evolution
-
2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 17881-17888
-
-
Xie, J.F.1
Zhang, J.J.2
Li, S.3
Grote, F.4
Zhang, X.D.5
Zhang, H.6
Wang, R.X.7
Lei, Y.8
Pan, B.C.9
Xie, Y.10
|