메뉴 건너뛰기




Volumn 2174, Issue , 2001, Pages 48-62

Bayesian learning and evolutionary parameter optimization

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; FUNCTIONS; STOCHASTIC SYSTEMS;

EID: 84974712003     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45422-5_5     Document Type: Conference Paper
Times cited : (1)

References (32)
  • 1
    • 0009693631 scopus 로고    scopus 로고
    • Technical Report 94-1-NN, Department of Information Technology and Production Economics, University of Vaasa
    • Alander, J. T. An Indexed Bibliography of Genetic Algorithms and Neural Networks. Technical Report 94-1-NN, Department of Information Technology and Production Economics, University of Vaasa, 1996.
    • (1996) An Indexed Bibliography of Genetic Algorithms and Neural Networks
    • Alander, J.T.1
  • 3
    • 0003651479 scopus 로고    scopus 로고
    • User Manual and Implementation Guide, Technical Report 21/96, Universität Karlsruhe
    • Braun, H. and Ragg, T. ENZO-Evolution of Neural Networks, User Manual and Implementation Guide, http://i11www.ira.uka.de. Technical Report 21/96, Universität Karlsruhe, 1996.
    • (1996) Enzo-Evolution of Neural Networks
    • Braun, H.1    Ragg, T.2
  • 8
    • 0002869229 scopus 로고    scopus 로고
    • Improving the determination of the hyperparameters in bayesian learning
    • Downs, T., Frean, M., and Gallagher, M., editors, Brisbane, Australien
    • Gutjahr, S. Improving the determination of the hyperparameters in bayesian learning. In Downs, T., Frean, M., and Gallagher, M., editors, Proceedings of the Ninth Australian Conference on Neural Networks (ACNN 98), pages 114-118, Brisbane, Australien, 1998.
    • (1998) Proceedings of the Ninth Australian Conference on Neural Networks (ACNN 98) , pp. 114-118
    • Gutjahr, S.1
  • 9
    • 0003500088 scopus 로고    scopus 로고
    • Dissertation, Universität Karlsruhe, Institut für Logik, Komplexität und Deduktionssysteme
    • Gutjahr, S. Optimierung Neuronaler Netze mit der Bayes’schen Methode. Dissertation, Universität Karlsruhe, Institut für Logik, Komplexität und Deduktionssysteme, 1999.
    • (1999) Optimierung Neuronaler Netze Mit Der Bayes’schen Methode
    • Gutjahr, S.1
  • 13
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • Mackay, D.J.C.1
  • 14
    • 0002704818 scopus 로고
    • A practical bayesian framework for backpropagation networks
    • MacKay, D. J. C. A practical bayesian framework for backpropagation networks. Neural Computation, 4(3):448-472, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 15
    • 0027205884 scopus 로고
    • A Scaled Conjugate Gradient Algorithm for fast Supervised Learning
    • Møller, M. A Scaled Conjugate Gradient Algorithm for fast Supervised Learning. Neural Networks, 6:525-533, 1993.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Møller, M.1
  • 17
    • 0030692475 scopus 로고    scopus 로고
    • Automatic Determination of Optimal Network Topologies based on Information Theory and Evolution
    • Ragg, T. and Gutjahr, S. Automatic Determination of Optimal Network Topologies based on Information Theory and Evolution. In IEEE, Proceedings of the 23rd EUROMICRO Conference 1997, pages 549-555, 1997.
    • (1997) IEEE, Proceedings of the 23Rd EUROMICRO Conference 1997 , pp. 549-555
    • Ragg, T.1    Gutjahr, S.2
  • 20
    • 0003458013 scopus 로고    scopus 로고
    • Dissertation, Universität Karlsruhe, Institut für Logik, Komplexität und Deduktionssysteme
    • Ragg, T. Problemlösung durch Komitees neuronaler Netze. Dissertation, Universität Karlsruhe, Institut für Logik, Komplexität und Deduktionssysteme, 2000.
    • (2000) Problemlösung Durch Komitees Neuronaler Netze
    • Ragg, T.1
  • 23
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms
    • Special Issue on Neural Networks
    • Riedmiller, M. Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms. Int. Journal of Computer Standards and Interfaces, 16:265-278, 1994. Special Issue on Neural Networks.
    • (1994) Int. Journal of Computer Standards and Interfaces , vol.16 , pp. 265-278
    • Riedmiller, M.1
  • 25
    • 0003636650 scopus 로고
    • Sixth-Generation Computer Technology Series. John Wiley & Sons
    • Schwefel, H.-P. Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. John Wiley & Sons, 1995.
    • (1995) Evolution and Optimum Seeking
    • Schwefel, H.-P.1
  • 27
    • 0001906968 scopus 로고    scopus 로고
    • Multi-Net Systems
    • Sharkey, A. J., editor, Springer
    • Sharkey, A. J. Multi-Net Systems. In Sharkey, A. J., editor, Combining Artificial Neural Nets, pages 1-30. Springer, 1999.
    • (1999) Combining Artificial Neural Nets , pp. 1-30
    • Sharkey, A.J.1
  • 28
    • 33846385444 scopus 로고
    • Density Estimation for Statistics and Data Analysis
    • Silverman, B. Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.
    • (1986) Chapman and Hall
    • Silverman, B.1
  • 32
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White, H. Learning in artificial neural networks: a statistical perspective. Neural Computation, 1:425-464, 1989.
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.