메뉴 건너뛰기




Volumn 1790, Issue , 2000, Pages 366-380

A dynamic bayesian network approach to tracking using learned switching dynamic models

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; HYBRID SYSTEMS; INFERENCE ENGINES; LINEAR CONTROL SYSTEMS; NONLINEAR DYNAMICAL SYSTEMS;

EID: 84974698749     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-46430-1_31     Document Type: Conference Paper
Times cited : (9)

References (27)
  • 4
    • 0005009033 scopus 로고    scopus 로고
    • Technical Report TR98- 21, Mitsubishi Electric Research Lab, Available at
    • M. Brand. Pattern discovery via entropy minimization. Technical Report TR98- 21, Mitsubishi Electric Research Lab, 1998. Available at http://www.merl.com.
    • (1998) Pattern Discovery via Entropy Minimization
    • Brand, M.1
  • 7
    • 84990553353 scopus 로고
    • A model for reasoning about persistance and causation
    • T. Dean and K. Kanazawa. A model for reasoning about persistance and causation. Computational Intelligence, 5(3), 1989.
    • (1989) Computational Intelligence , vol.5 , Issue.3
    • Dean, T.1    Kanazawa, K.2
  • 14
    • 0000935895 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, editor, Kluwer Academic Publishers
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. In M. I. Jordan, editor, Learning in graphical models. Kluwer Academic Publishers, 1998.
    • (1998) Learning in Graphical Models
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 15
    • 0029703412 scopus 로고    scopus 로고
    • Model-based estimation of 3D human motion with occlusion based on active multi-viewpoint selection
    • San Fransisco, CA, June 18-20
    • I. A. Kakadiaris and D. Metaxas. Model-based estimation of 3D human motion with occlusion based on active multi-viewpoint selection. In Computer Vision and Pattern Recognition, pages 81-87, San Fransisco, CA, June 18-20 1996.
    • (1996) Computer Vision and Pattern Recognition , pp. 81-87
    • Kakadiaris, I.A.1    Metaxas, D.2
  • 17
    • 0002634803 scopus 로고
    • Dynamic linear models with markov-switching
    • C.-J. Kim. Dynamic linear models with markov-switching. Journal of Econometrics, 60:1-22, 1994.
    • (1994) Journal of Econometrics , vol.60 , pp. 1-22
    • Kim, C.-J.1
  • 18
    • 0032089729 scopus 로고    scopus 로고
    • Finite-dimensional filters for passive tracking of markov jump linear systems
    • V. Krishnamurthy and J. Evans. Finite-dimensional filters for passive tracking of markov jump linear systems. Automatica, 34(6):765-770, 1998.
    • (1998) Automatica , vol.34 , Issue.6 , pp. 765-770
    • Krishnamurthy, V.1    Evans, J.2
  • 19
    • 0032292397 scopus 로고    scopus 로고
    • Singularity analysis for articulated object tracking
    • Santa Barbara, CA, June 23-25
    • D. D. Morris and J. M. Rehg. Singularity analysis for articulated object tracking. In Computer Vision and Pattern Recognition, pages 289-296, Santa Barbara, CA, June 23-25 1998.
    • (1998) Computer Vision and Pattern Recognition , pp. 289-296
    • Morris, D.D.1    Rehg, J.M.2
  • 20
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • R. M. Neal. Connectionist learning of belief networks. Artificial Intelligence, pages 71-113, 1992.
    • (1992) Artificial Intelligence , pp. 71-113
    • Neal, R.M.1
  • 21
    • 0002788893 scopus 로고    scopus 로고
    • A new view of the EM algorithm that justifies incremental and other variants
    • M. Jordan, editor, Kluwer Academic Publishers
    • R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental and other variants. In M. Jordan, editor, Learning in graphical models, pages 355-368. Kluwer Academic Publishers, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 22
    • 0032681772 scopus 로고    scopus 로고
    • Time-series classification using mixed-state dynamic Bayesian networks
    • June
    • V. Pavlovic, B. Frey, and T. S. Huang. Time-series classification using mixed-state dynamic Bayesian networks. In Computer Vision and Pattern Recognition, pages 609-615, June 1999.
    • (1999) Computer Vision and Pattern Recognition , pp. 609-615
    • Pavlovic, V.1    Frey, B.2    Huang, T.S.3
  • 25
    • 84937741903 scopus 로고
    • Solutions to the linear smoothing problem
    • AC, October
    • H. E. Rauch. Solutions to the linear smoothing problem. IEEE Trans. Automatic Control, AC-8(4):371-372, October 1963.
    • (1963) IEEE Trans. Automatic Control , vol.8 , Issue.4 , pp. 371-372
    • Rauch, H.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.