메뉴 건너뛰기




Volumn 1910, Issue , 2000, Pages 490-497

Learning from labeled and unlabeled documents: A comparative study on semi-supervised text classification

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; INFORMATION RETRIEVAL SYSTEMS; LARGE DATASET; LEARNING ALGORITHMS; MACHINE LEARNING; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; TEXT PROCESSING;

EID: 84974687107     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45372-5_56     Document Type: Conference Paper
Times cited : (6)

References (14)
  • 2
    • 0002409860 scopus 로고    scopus 로고
    • A probabilistic analysis of the Rocchio algorithm with tfidf for text categorization
    • T. Joachims. A probabilistic analysis of the Rocchio algorithm with tfidf for text categorization. In Proceedings of ICML’97, 1997.
    • (1997) Proceedings of ICML’97
    • Joachims, T.1
  • 3
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Springer Verlag
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of ECML’98. Springer Verlag, 1998.
    • (1998) Proceedings of ECML’98
    • Joachims, T.1
  • 5
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In Proceedings of ICML’99, 1999.
    • (1999) Proceedings of ICML’99
    • Joachims, T.1
  • 6
    • 84974718488 scopus 로고    scopus 로고
    • Partially supervised text classification: Combining labeled and unlabeled documents using an EM-like scheme
    • C. Lanquillon. Partially supervised text classification: Combining labeled and unlabeled documents using an EM-like scheme. In accepted at ECML2000, 2000.
    • (2000) Accepted at ECML2000
    • Lanquillon, C.1
  • 9
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • To appear
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 2000. To appear.
    • (2000) Machine Learning
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 10
    • 0001560952 scopus 로고
    • Relevance feedback in information retrieval
    • Prentice-Hall
    • J. J. Rocchio Jr. Relevance feedback in information retrieval. In The SMART Retrieval System. Prentice-Hall, 1971.
    • (1971) The SMART Retrieval System
    • Rocchio, J.J.1
  • 12
    • 0017500411 scopus 로고
    • A theoretical basis for the use of co-occurrence data in information retrieval
    • C. J. van Rijsbergen. A theoretical basis for the use of co-occurrence data in information retrieval. Journal of Documentation, 33(2): 106-119, 1977.
    • (1977) Journal of Documentation , vol.33 , Issue.2 , pp. 106-119
    • van Rijsbergen, C.J.1
  • 14
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Y. Yang and J. O. Pedersen. A comparative study on feature selection in text categorization. In Proceedings of ICML’97, pages 412-420, 1997.
    • (1997) Proceedings of ICML’97 , pp. 412-420
    • Yang, Y.1    Pedersen, J.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.