-
1
-
-
0001371923
-
Fast discovery of association rules
-
AAAI Press
-
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of association rules. In Advances in Knowledge Discovery and Data Mining, pages 307-328. AAAI Press, 1996.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.I.5
-
2
-
-
0001882616
-
Fast algorithms for mining association rules in large databases
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proc. VLDB’94, pages 487-499, 1994.
-
(1994)
Proc. VLDB’94
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
3
-
-
85172415673
-
Brute-force mining of high-confidence classification rules
-
R. J. Bayardo. Brute-force mining of high-confidence classification rules. In Pro-ceedings KDD’97, pages 123-126, 1997.
-
(1997)
Pro-ceedings KDD’97
, pp. 123-126
-
-
Bayardo, R.J.1
-
5
-
-
84942749652
-
Frequent closures as a concise representation for binary data mining
-
Kyoto, JP, Springer-Verlag
-
J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation for binary data mining. In Proc. PAKDD’00, volume 1805 of LNAI, pages 62-73, Kyoto, JP, 2000. Springer-Verlag.
-
(2000)
Proc. PAKDD’00, volume 1805 of LNAI
, pp. 62-73
-
-
Boulicaut, J.-F.1
Bykowski, A.2
-
6
-
-
70649113279
-
-
Technical Report 2000-01, INSA Lyon, LISI, F-69621 Villeurbanne, Mar
-
J.-F. Boulicaut and B. Jeudy. Using constraints during itemset mining: a generic approach. Technical Report 2000-01, INSA Lyon, LISI, F-69621 Villeurbanne, Mar. 2000.
-
(2000)
Using constraints during itemset mining: A generic approach
-
-
Boulicaut, J.-F.1
Jeudy, B.2
-
7
-
-
84942740045
-
-
Technical Report July 1999, Master of Science thesis, INSA Lyon, LISI, F-69621 Villeurbanne
-
A. Bykowski. Frequent set discovery in highly-correlated data. Technical Report July 1999, Master of Science thesis, INSA Lyon, LISI, F-69621 Villeurbanne, 1999.
-
(1999)
Frequent set discovery in highly-correlated data
-
-
Bykowski, A.1
-
8
-
-
84974679081
-
Frequent itemset extraction in highly-correlated data: A web usage mining application
-
Kyoto, JP, Apr
-
A. Bykowski and L. Gomez-Chantada. Frequent itemset extraction in highly-correlated data: a web usage mining application. In Proc. WKDDM’00, pages 27-42, Kyoto, JP, Apr. 2000.
-
(2000)
Proc. WKDDM’00
, pp. 27-42
-
-
Bykowski, A.1
Gomez-Chantada, L.2
-
9
-
-
0033871040
-
Dynamic miss-counting algo-rithms: Finding implication and similarity rules with confidence pruning
-
San Diego, USA
-
S. Fujiwara, J. D. Ullman, and R. Motwani. Dynamic miss-counting algo-rithms: Finding implication and similarity rules with confidence pruning. In Proc. ICDE’00, pages 501-511, San Diego, USA, 2000.
-
(2000)
Proc. ICDE’00
, pp. 501-511
-
-
Fujiwara, S.1
Ullman, J.D.2
Motwani, R.3
-
10
-
-
0001128875
-
Multiple uses of frequent sets and condensed repre-sentations
-
Portland, USA
-
H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed repre-sentations. In Proceedings KDD’96, pages 189-194, Portland, USA, 1996.
-
(1996)
Proceedings KDD’96
, pp. 189-194
-
-
Mannila, H.1
Toivonen, H.2
-
11
-
-
21944442464
-
Levelwise search and borders of theories in knowledge discovery
-
H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1(3): 241-258, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.3
, pp. 241-258
-
-
Mannila, H.1
Toivonen, H.2
-
12
-
-
0032092760
-
Exploratory mining and pruning optimization of constrained association rules
-
Seattle, USA
-
R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimization of constrained association rules. In Proc. ACM SIGMOD’98, pages 13-24, Seattle, USA, 1998.
-
(1998)
Proc. ACM SIGMOD’98
, pp. 13-24
-
-
Ng, R.1
Lakshmanan, L.V.2
Han, J.3
Pang, A.4
-
13
-
-
0033096890
-
Eficient mining of association rules using closed itemset lattices
-
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Eficient mining of association rules using closed itemset lattices. Information Systems, 24(1): 25-46, 1999.
-
(1999)
Information Systems
, vol.24
, Issue.1
, pp. 25-46
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
14
-
-
0347527750
-
-
Technical Report 2000-07, Univsersity of California, Department of Information and Computer Science, Irvine, CA-92697-3425, Feb
-
D. Pavlov, H. Mannila, and P. Smyth. Probalistic models for query approxima-tion with large data sets. Technical Report 2000-07, Univsersity of California, Department of Information and Computer Science, Irvine, CA-92697-3425, Feb. 2000.
-
(2000)
Probalistic models for query approxima-tion with large data sets
-
-
Pavlov, D.1
Mannila, H.2
Smyth, P.3
-
15
-
-
0002877253
-
Discovery, analysis, and presentation of strong rules
-
AAAI Press, Menlo Park, CA
-
G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In Knowledge Discovery in Databases, pages 229-248. AAAI Press, Menlo Park, CA, 1991.
-
(1991)
Knowledge Discovery in Databases
, pp. 229-248
-
-
Piatetsky-Shapiro, G.1
|