메뉴 건너뛰기




Volumn 6, Issue 4, 1995, Pages 329-354

The reducibility of partially invariant solutions of systems of partial differential equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84974315615     PISSN: 09567925     EISSN: 14694425     Source Type: Journal    
DOI: 10.1017/S0956792500001881     Document Type: Article
Times cited : (10)

References (22)
  • 3
    • 0037577501 scopus 로고
    • Generalized motions in Riemannian spaces
    • Ibragimov N. H. 1968 Generalized motions in Riemannian spaces. Soviet Math. Dokl. 9, 21–24.
    • (1968) Soviet Math. Dokl. , vol.9 , pp. 21-24
    • Ibragimov, N.H.1
  • 4
    • 0141622113 scopus 로고
    • Groups of generalized motions
    • Ibragimov N. H. 1969 Groups of generalized motions. Soviet Math. Dokl. 10, 780–784.
    • (1969) Soviet Math. Dokl. , vol.10 , pp. 780-784
    • Ibragimov, N.H.1
  • 6
    • 84974303781 scopus 로고
    • Neustanovivshiesia dvizheniia viazkoi zhidkosti so svobodnoi granitsei, opisibaemie chastichno-incariantnimi resheniiami urabnenii Navier-Stokesa
    • Pukhnachov V. V. 1972 Neustanovivshiesia dvizheniia viazkoi zhidkosti so svobodnoi granitsei, opisibaemie chastichno-incariantnimi resheniiami urabnenii Navier-Stokesa. Dinimika Sploshnoi Sredi 10, 125–137.
    • (1972) Dinimika Sploshnoi Sredi , vol.10 , pp. 125-137
    • Pukhnachov, V.V.1
  • 8
    • 84974461428 scopus 로고
    • On a problem of reduction
    • in Russian).
    • Bytev V. O. 1970 On a problem of reduction, Dynamika Sploshnoi Sredi 5, 146–148 (in Russian).
    • (1970) Dynamika Sploshnoi Sredi , vol.5 , pp. 146-148
    • Bytev, V.O.1
  • 9
    • 0039781880 scopus 로고
    • Lie symmetries of some equations of the Fokker–Planck type
    • Dunn K. A. & Sastri C. C. A. 1985 Lie symmetries of some equations of the Fokker–Planck type. J. Math. Phys. 26, 3042–3047.
    • (1985) J. Math. Phys. , vol.26 , pp. 3042-3047
    • Dunn, K.A.1    Sastri, C.C.A.2
  • 10
    • 84974273941 scopus 로고
    • Group analysis of some partial differential equations arising in applications
    • Sastri C. C. A. 1986 Group analysis of some partial differential equations arising in applications. Contemporary Math. 54, 35–44.
    • (1986) Contemporary Math. , vol.54 , pp. 35-44
    • Sastri, C.C.A.1
  • 11
    • 0008444816 scopus 로고
    • Ovsiannikov's Method and the Construction of Partially Invariant Solutions
    • Dunn K. A., Rao D. R. K. S. & Sastri CCA. 1987 Ovsiannikov's Method and the Construction of Partially Invariant Solutions. J. Math. Phys. 28, 1473–1476.
    • (1987) J. Math. Phys. , vol.28 , pp. 1473-1476
    • Dunn, K.A.1    Rao, D.R.K.S.2    Sastri, C.3
  • 12
    • 0038253069 scopus 로고
    • Partially invariant solutions of class of nonlinear Schrodinger equations
    • Martina L., Soliani G. & Winternitz P. 1992 Partially invariant solutions of class of nonlinear Schrodinger equations. J. Phys. A: Math. Gen. 25, 4425–4435.
    • (1992) J. Phys. A: Math. Gen. , vol.25 , pp. 4425-4435
    • Martina, L.1    Soliani, G.2    Winternitz, P.3
  • 13
    • 0011524508 scopus 로고
    • Partially invariant solutions of nonlinear Klein–Gordon and Laplace equations
    • Martina L. & Winternitz P. 1992 Partially invariant solutions of nonlinear Klein–Gordon and Laplace equations. J. Math. Phys. 33, 2718–2727.
    • (1992) J. Math. Phys. , vol.33 , pp. 2718-2727
    • Martina, L.1    Winternitz, P.2
  • 14
    • 84974347262 scopus 로고
    • A differential constraints approach to partial invariance. Europ. J. Appl. Math. (to appear).
    • Ondich J. 1987 A differential constraints approach to partial invariance. Europ. J. Appl. Math. (to appear).
    • (1987)
    • Ondich, J.1
  • 15
    • 46149142625 scopus 로고
    • The construction of special solutions to partial differential equations
    • Olver P. J. & Rosenau P. 1986 The construction of special solutions to partial differential equations. Physics Letters 114A, 107–112.
    • (1986) Physics Letters , vol.114A , pp. 107-112
    • Olver, P.J.1    Rosenau, P.2
  • 16
    • 84974253313 scopus 로고    scopus 로고
    • Symmetry and explicit solutions of partial differential equations. Appl. Num. Math. (to appear).
    • Olver P. J. Symmetry and explicit solutions of partial differential equations. Appl. Num. Math. (to appear).
    • Olver, P.J.1
  • 20
    • 84974278153 scopus 로고
    • Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves.
    • Lax P. D. 1973 Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. CBMS Regional Conference Series in Applied Mathematics vol. IISIAMPhiladelphia.
    • (1973)
    • Lax, P.D.1
  • 21
    • 0001241703 scopus 로고
    • Hamiltonian structures for systems of hyperbolic conservation laws
    • Nutku Y. & Olver P. J. 1988 Hamiltonian structures for systems of hyperbolic conservation laws. J. Math. Phys. 29, 1610–1619.
    • (1988) J. Math. Phys. , vol.29 , pp. 1610-1619
    • Nutku, Y.1    Olver, P.J.2
  • 22


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.