-
3
-
-
0000933607
-
Diskrete Untergruppen von SL2(R)
-
H. HELLING. Diskrete Untergruppen von SL2(R). Invent. Math. 17 (1972), 217–229.
-
(1972)
Invent. Math.
, vol.17
, pp. 217-229
-
-
HELLING, H.1
-
4
-
-
84980148232
-
Characters of free groups represented in the two-dimensional special linear group
-
R. D. HOROWITZ. Characters of free groups represented in the two-dimensional special linear group. Comm. Pure Appl. Math. 25 (1972), 635–649.
-
(1972)
Comm. Pure Appl. Math.
, vol.25
, pp. 635-649
-
-
HOROWITZ, R.D.1
-
5
-
-
0002376516
-
Induced automorphisms on Fricke characters of free groups
-
R. D. HOROWITZ. Induced automorphisms on Fricke characters of free groups. Trans. Amer. Math. Soc. 208 (1975), 41–50.
-
(1975)
Trans. Amer. Math. Soc.
, vol.208
, pp. 41-50
-
-
HOROWITZ, R.D.1
-
6
-
-
0002387848
-
Integral representations of Aut Fnand presentation classes of groups
-
M. LUSTIG and W. METZLER. Integral representations of Aut Fnand presentation classes of groups. Contemp. Math. 44 (1985), 51–67.
-
(1985)
Contemp. Math.
, vol.44
, pp. 51-67
-
-
LUSTIG, M.1
METZLER, W.2
-
7
-
-
0002214165
-
Rings of Fricke characters and automorphisms of free groups
-
W. MAGNUS. Rings of Fricke characters and automorphisms of free groups. Math. Z. 170 (1980), 91–103.
-
(1980)
Math. Z.
, vol.170
, pp. 91-103
-
-
MAGNUS, W.1
-
8
-
-
0001099615
-
The uses of 2 by 2 matrices in combinatorial group theory
-
W. MAGNUS. The uses of 2 by 2 matrices in combinatorial group theory. A survey. Resultate Math. 4 (1981), 171–192.
-
(1981)
Resultate Math.
, vol.4
, pp. 171-192
-
-
MAGNUS, W.1
-
10
-
-
0007340887
-
Die Automorphismengruppe der freien Gruppen
-
B. H. NEUMANN. Die Automorphismengruppe der freien Gruppen. Math. Ann. 107 (1932), 367–386.
-
(1932)
Math. Ann.
, vol.107
, pp. 367-386
-
-
NEUMANN, B.H.1
-
11
-
-
0642358419
-
Die Isomorphismengruppe der freien Gruppen
-
J. NIELSEN. Die Isomorphismengruppe der freien Gruppen. Math. Ann. 91 (1924), 169–209.
-
(1924)
Math. Ann.
, vol.91
, pp. 169-209
-
-
NIELSEN, J.1
-
12
-
-
0039802236
-
Fuchsche Gruppen, die freies Produkt zweier zyklischer Gruppen sind, und die Gleichung x2 + y2 + z2 = xyz
-
G. ROSENBERGER. Fuchsche Gruppen, die freies Produkt zweier zyklischer Gruppen sind, und die Gleichung x2 + y2 + z2 = xyz. Math. Ann. 199 (1972), 213–227.
-
(1972)
Math. Ann.
, vol.199
, pp. 213-227
-
-
ROSENBERGER, G.1
-
13
-
-
84968484438
-
On special linear characters of free groups of rank n ≥ 4
-
A. WHITTEMORE. On special linear characters of free groups of rank n ≥ 4. Proc. Amer. Math. Soc. 40 (1973), 383–388.
-
(1973)
Proc. Amer. Math. Soc.
, vol.40
, pp. 383-388
-
-
WHITTEMORE, A.1
|