-
1
-
-
0000180726
-
Fundamental polyhedrons and limit point sets of Kleinian groups
-
L. V. AHLFORS, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 251-254.
-
(1966)
Proc. Nat. Acad. Sci. U.S.A
, vol.55
, pp. 251-254
-
-
Ahlfors, L.V.1
-
2
-
-
84972545998
-
The Dirichlet problem at infinity for manifolds of negative curvature
-
M. ANDERSON, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), 701-721.
-
(1983)
J. Differential Geom
, vol.18
, pp. 701-721
-
-
Anderson, M.1
-
3
-
-
0003331011
-
Manifolds of Nonpositive Curvature
-
Birkhauser, Boston
-
W. BALLMANN, M. GROMOV, AND V. SCHROEDER, Manifolds of Nonpositive Curvature, Progr. Math. 61, Birkhauser, Boston, 1985.
-
(1985)
Progr. Math
, vol.61
-
-
Ballmann, W.1
Gromov, M.2
Schroeder, V.3
-
4
-
-
0002156308
-
Limit sets of Kleinian groups and finite sided fundamental polyhedra
-
A. BEARDON AND B. MASKIT, Limit sets of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1-12.
-
(1974)
Acta Math
, vol.132
, pp. 1-12
-
-
Beardon, A.1
Maskit, B.2
-
5
-
-
0000726038
-
Geometrical finiteness for hyperbolic groups
-
B. H. BOWDITCH, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), 245-317.
-
(1993)
J. Funct. Anal
, vol.113
, pp. 245-317
-
-
Bowditch, B.H.1
-
6
-
-
84972492349
-
Discrete parabolic groups
-
B. H. BOWDITCH, Discrete parabolic groups, J. Differential Geom. 38 (1993), 559-583.
-
(1993)
J. Differential Geom
, vol.38
, pp. 559-583
-
-
Bowditch, B.H.1
-
7
-
-
51249161749
-
Some results on the geometry of convex hulls in manifolds of pinched negative curvature
-
B. H. BOWDITCH, Some results on the geometry of convex hulls in manifolds of pinched negative curvature, Comment. Math. Helv. 69 (1994), 49-81.
-
(1994)
Comment. Math. Helv
, vol.69
, pp. 49-81
-
-
Bowditch, B.H.1
-
8
-
-
0002937116
-
Geodesics and curvature in metric simplicial complexes
-
by E. Ghys, A. Haefliger, and A. Verjovsky, World Scientific, River Edge, NJ
-
M. R. BRIDSON, "Geodesics and curvature in metric simplicial complexes" in Group Theory from a Geometrical Viewpoint, ed. by E. Ghys, A. Haefliger, and A. Verjovsky, World Scientific, River Edge, NJ, 1991, 373-463.
-
(1991)
Group Theory from a Geometrical Viewpoint
, pp. 373-463
-
-
Bridson, M.R.1
-
10
-
-
0000595159
-
Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces
-
London Math. Soc. Lecture Notes Series 111, ed. by D. B. A. Epstein, Cambridge Univ. Press, Cambridge
-
D. B. A. EPSTEIN AND A. MARDEN, "Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces" in Analytical and Geometric Aspects of Hyperbolic Space, London Math. Soc. Lecture Notes Series 111, ed. by D. B. A. Epstein, Cambridge Univ. Press, Cambridge, 1987, 113-253.
-
(1987)
Analytical and Geometric Aspects of Hyperbolic Space
, pp. 113-253
-
-
Epstein, D.B.A.1
Marden, A.2
-
11
-
-
0039719072
-
Complex hyperbolic Kleinian groups
-
Lecture Notes in Pure and Appl. Math. 143, Dekker, New York
-
W. M. GOLDMAN, "Complex hyperbolic Kleinian groups" in Complex Geometry (Osaka 1990), Lecture Notes in Pure and Appl. Math. 143, Dekker, New York, 1993, 31-52.
-
(1993)
Complex Geometry (Osaka 1990)
, pp. 31-52
-
-
Goldman, W.M.1
-
14
-
-
0000954277
-
The geometry of finitely generated Kleinian groups
-
A. MARDEN, The geometry of finitely generated Kleinian groups, Ann. of Math. (2) 99 (1974), 383-462.
-
(1974)
Ann. of Math
, vol.99
, Issue.2
, pp. 383-462
-
-
Marden, A.1
-
16
-
-
84966213959
-
Dirichlet polyhedra for cyclic groups in complex hyperbolic space
-
M. B. PHILLIPS, Dirichlet polyhedra for cyclic groups in complex hyperbolic space, Proc. Amer. Math. Soc. 115 (1992), 221-228.
-
(1992)
Proc. Amer. Math. Soc
, vol.115
, pp. 221-228
-
-
Phillips, M.B.1
-
17
-
-
85100829523
-
-
Publish or Perish, Wilmington, Del
-
M. SPIVAK, A Comprehensive Introduction to Differential Geometry, 2nd ed., Publish or Perish, Wilmington, Del., 1979.
-
(1979)
A Comprehensive Introduction to Differential Geometry, 2nd ed.
-
-
Spivak, M.1
|