메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 3092-3100

Online object tracking with proposal selection

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; MATHEMATICAL TRANSFORMATIONS; TRACKING (POSITION);

EID: 84973902476     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.354     Document Type: Conference Paper
Times cited : (108)

References (53)
  • 1
    • 84973900955 scopus 로고    scopus 로고
    • http://lear. inrialpes. fr/research/pstracker.
  • 2
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. PAMI, 2012.
    • (2012) PAMI
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 3
    • 33947229323 scopus 로고    scopus 로고
    • Ensemble tracking
    • S. Avidan. Ensemble tracking. PAMI, 2007.
    • (2007) PAMI
    • Avidan, S.1
  • 4
    • 79959527478 scopus 로고    scopus 로고
    • Robust object tracking with online multiple instance learning
    • B. Babenko, M.-H. Yang, and S. Belongie. Robust object tracking with online multiple instance learning. PAMI, 2011.
    • (2011) PAMI
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 5
    • 50649089568 scopus 로고    scopus 로고
    • Probabilistic color and adaptive multi-feature tracking with dynamically switched priority between cues
    • V. Badrinarayanan, P. Pérez, F. Le Clerc, and L. Oisel. Probabilistic color and adaptive multi-feature tracking with dynamically switched priority between cues. In ICCV, 2007.
    • (2007) ICCV
    • Badrinarayanan, V.1    Pérez, P.2    Le Clerc, F.3    Oisel, L.4
  • 6
    • 0032302833 scopus 로고    scopus 로고
    • Elliptical head tracking using intensity gradients and color histograms
    • S. Birchfield. Elliptical head tracking using intensity gradients and color histograms. In CVPR, 1998.
    • (1998) CVPR
    • Birchfield, S.1
  • 7
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. PAMI, 33(3):510-513, 2011.
    • (2011) PAMI , vol.33 , Issue.3 , pp. 510-513
    • Brox, T.1    Malik, J.2
  • 8
    • 77956008665 scopus 로고    scopus 로고
    • Constrained parametric min-cuts for automatic object segmentation
    • J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Carreira, J.1    Sminchisescu, C.2
  • 9
    • 27644528380 scopus 로고    scopus 로고
    • Online selection of discriminative tracking features
    • R. T. Collins, Y. Liu, and M. Leordeanu. Online selection of discriminative tracking features. PAMI, 2005.
    • (2005) PAMI
    • Collins, R.T.1    Liu, Y.2    Leordeanu, M.3
  • 10
    • 0038633569 scopus 로고    scopus 로고
    • Kernel-based object tracking
    • D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. PAMI, 25(5):564-577, 2003.
    • (2003) PAMI , vol.25 , Issue.5 , pp. 564-577
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 11
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 12
    • 84919754301 scopus 로고    scopus 로고
    • Accurate scale estimation for robust visual tracking
    • M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Accurate scale estimation for robust visual tracking. In BMVC, 2014.
    • (2014) BMVC
    • Danelljan, M.1    Häger, G.2    Khan, F.S.3    Felsberg, M.4
  • 13
    • 84898820142 scopus 로고    scopus 로고
    • Structured forests for fast edge detection
    • P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In ICCV, 2013.
    • (2013) ICCV
    • Dollár, P.1    Zitnick, C.L.2
  • 15
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 16
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32(9):1627-1645, 2010.
    • (2010) PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 17
    • 84856645114 scopus 로고    scopus 로고
    • Hough-based tracking of non-rigid objects
    • M. Godec, P. M. Roth, and H. Bischof. Hough-based tracking of non-rigid objects. In ICCV, 2011.
    • (2011) ICCV
    • Godec, M.1    Roth, P.M.2    Bischof, H.3
  • 18
    • 70350531007 scopus 로고    scopus 로고
    • Semi-supervised on-line boosting for robust tracking
    • H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV, 2008.
    • (2008) ECCV
    • Grabner, H.1    Leistner, C.2    Bischof, H.3
  • 19
    • 84856659290 scopus 로고    scopus 로고
    • Struck: Structured output tracking with kernels
    • S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011.
    • (2011) ICCV
    • Hare, S.1    Saffari, A.2    Torr, P.H.S.3
  • 21
  • 23
    • 85026928876 scopus 로고    scopus 로고
    • Occlusion and motion reasoning for long-term tracking
    • Y. Hua, K. Alahari, and C. Schmid. Occlusion and motion reasoning for long-term tracking. In ECCV, 2014.
    • (2014) ECCV
    • Hua, Y.1    Alahari, K.2    Schmid, C.3
  • 24
    • 0001158189 scopus 로고    scopus 로고
    • ICONDENSATION: Unifying lowlevel and high-level tracking in a stochastic framework
    • M. Isard and A. Blake. ICONDENSATION: Unifying lowlevel and high-level tracking in a stochastic framework. In ECCV, 1998.
    • (1998) ECCV
    • Isard, M.1    Blake, A.2
  • 25
    • 84866725281 scopus 로고    scopus 로고
    • Visual tracking via adaptive structural local sparse appearance model
    • X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive structural local sparse appearance model. In CVPR, 2012.
    • (2012) CVPR
    • Jia, X.1    Lu, H.2    Yang, M.-H.3
  • 26
    • 84861312439 scopus 로고    scopus 로고
    • Tracking-learningdetection
    • Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learningdetection. PAMI, 34(7):1409-1422, 2012.
    • (2012) PAMI , vol.34 , Issue.7 , pp. 1409-1422
    • Kalal, Z.1    Mikolajczyk, K.2    Matas, J.3
  • 27
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • R. E. Kalman. A new approach to linear filtering and prediction problems. J. Fluids Engineering, 1960.
    • (1960) J. Fluids Engineering
    • Kalman, R.E.1
  • 29
    • 84863049929 scopus 로고    scopus 로고
    • Tracking by sampling trackers
    • J. Kwon and K. M. Lee. Tracking by sampling trackers. In ICCV, 2011.
    • (2011) ICCV
    • Kwon, J.1    Lee, K.M.2
  • 30
    • 23844554860 scopus 로고    scopus 로고
    • Visual tracking and recognition using probabilistic appearance manifolds
    • K. Lee, J. Ho, M. Yang, and D. Kriegman. Visual tracking and recognition using probabilistic appearance manifolds. CVIU, 99(3):303-331, 2005.
    • (2005) CVIU , vol.99 , Issue.3 , pp. 303-331
    • Lee, K.1    Ho, J.2    Yang, M.3    Kriegman, D.4
  • 31
    • 50249105375 scopus 로고    scopus 로고
    • Coupled object detection and tracking from static cameras and moving vehicles
    • B. Leibe, K. Schindler, N. Cornelis, and L. van Gool. Coupled object detection and tracking from static cameras and moving vehicles. PAMI, 30(10):1683-1698, 2008.
    • (2008) PAMI , vol.30 , Issue.10 , pp. 1683-1698
    • Leibe, B.1    Schindler, K.2    Cornelis, N.3    Van Gool, L.4
  • 32
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 34
    • 3042619859 scopus 로고    scopus 로고
    • The template update problem
    • I. Matthews, T. Ishikawa, and S. Baker. The template update problem. PAMI, 26(6):810-815, 2004.
    • (2004) PAMI , vol.26 , Issue.6 , pp. 810-815
    • Matthews, I.1    Ishikawa, T.2    Baker, S.3
  • 35
    • 80053126093 scopus 로고    scopus 로고
    • Robust visual tracking and vehicle classification via sparse representation
    • X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse representation. PAMI, 2011.
    • (2011) PAMI
    • Mei, X.1    Ling, H.2
  • 36
    • 84904695947 scopus 로고    scopus 로고
    • Consensus-based matching and tracking of keypoints for object tracking
    • G. Nebehay and R. Pflugfelder. Consensus-based matching and tracking of keypoints for object tracking. In WACV, 2014.
    • (2014) WACV
    • Nebehay, G.1    Pflugfelder, R.2
  • 37
    • 84898798671 scopus 로고    scopus 로고
    • Finding the best from the second bests-inhibiting subjective bias in evaluation of visual tracking algorithms
    • Y. Pang and H. Ling. Finding the best from the second bests-inhibiting subjective bias in evaluation of visual tracking algorithms. In ICCV, 2013.
    • (2013) ICCV
    • Pang, Y.1    Ling, H.2
  • 38
    • 84866635845 scopus 로고    scopus 로고
    • Robust visual tracking using autoregressive hidden Markov model
    • D. Park, J. Kwon, and K. Lee. Robust visual tracking using autoregressive hidden Markov model. In CVPR, 2012.
    • (2012) CVPR
    • Park, D.1    Kwon, J.2    Lee, K.3
  • 39
    • 13344250690 scopus 로고    scopus 로고
    • Data fusion for visual tracking with particles
    • J. Pérez, P. Vermaak and A. Blake. Data fusion for visual tracking with particles. Proc. IEEE, 92(3):495-513, 2004.
    • (2004) Proc. IEEE , vol.92 , Issue.3 , pp. 495-513
    • Pérez, J.1    Vermaak, P.2    Blake, A.3
  • 40
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In NIPS, 1999.
    • (1999) NIPS
    • Platt, J.C.1
  • 41
    • 33947211728 scopus 로고    scopus 로고
    • Tracking people by learning their appearance
    • D. Ramanan, D. Forsyth, and A. Zisserman. Tracking people by learning their appearance. PAMI, 29(1):65-81, 2007.
    • (2007) PAMI , vol.29 , Issue.1 , pp. 65-81
    • Ramanan, D.1    Forsyth, D.2    Zisserman, A.3
  • 42
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • D. A. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual tracking. IJCV, 2008.
    • (2008) IJCV
    • Ross, D.A.1    Lim, J.2    Lin, R.3    Yang, M.4
  • 44
    • 84898775168 scopus 로고    scopus 로고
    • Tracking revisited using RGBD camera: Unified benchmark and baselines
    • S. Song and J. Xiao. Tracking revisited using RGBD camera: Unified benchmark and baselines. In ICCV, 2013.
    • (2013) ICCV
    • Song, S.1    Xiao, J.2
  • 45
    • 4544326145 scopus 로고    scopus 로고
    • Towards robust multi-cue integration for visual tracking
    • M. Spengler and B. Schiele. Towards robust multi-cue integration for visual tracking. Machine Vis. App., 2003.
    • (2003) Machine Vis. App.
    • Spengler, M.1    Schiele, B.2
  • 46
    • 70450186988 scopus 로고    scopus 로고
    • Learning to track with multiple observers
    • B. Stenger, T. Woodley, and R. Cipolla. Learning to track with multiple observers. In CVPR, 2009.
    • (2009) CVPR
    • Stenger, B.1    Woodley, T.2    Cipolla, R.3
  • 47
    • 84887368146 scopus 로고    scopus 로고
    • Self-paced learning for long-term tracking
    • J. S. Supancic and D. Ramanan. Self-paced learning for long-term tracking. In CVPR, 2013.
    • (2013) CVPR
    • Supancic, J.S.1    Ramanan, D.2
  • 49
    • 34548102203 scopus 로고    scopus 로고
    • Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors
    • B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. IJCV, 2007.
    • (2007) IJCV
    • Wu, B.1    Nevatia, R.2
  • 50
    • 84887348427 scopus 로고    scopus 로고
    • Online object tracking: A benchmark
    • Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
    • (2013) CVPR
    • Wu, Y.1    Lim, J.2    Yang, M.-H.3
  • 51
    • 84950124752 scopus 로고    scopus 로고
    • MEEM: Robust tracking via multiple experts using entropy minimization
    • J. Zhang, S. Ma, and S. Sclaroff. MEEM: robust tracking via multiple experts using entropy minimization. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, J.1    Ma, S.2    Sclaroff, S.3
  • 52
    • 84866648566 scopus 로고    scopus 로고
    • Robust object tracking via sparsity-based collaborative model
    • W. Zhong, H. Lu, and M.-H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, 2012.
    • (2012) CVPR
    • Zhong, W.1    Lu, H.2    Yang, M.-H.3
  • 53
    • 84952018709 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014.
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.