-
1
-
-
84973885164
-
-
The benchmark data sets-USPS in semi-supervised learning book
-
The benchmark data sets-USPS in semi-supervised learning book. 2006.
-
(2006)
-
-
-
2
-
-
84973921001
-
-
GINA digit recognition database IJCNN
-
GINA digit recognition database IJCNN. 2007.
-
(2007)
-
-
-
3
-
-
84973856583
-
Ten physical applications of spectral zeta functions
-
E. Bergshoeff. Ten physical applications of spectral zeta functions. CQG, 13(7), 1996.
-
(1996)
CQG
, vol.13
, Issue.7
-
-
Bergshoeff, E.1
-
4
-
-
84936824655
-
Power and centrality: A family of measures
-
P. Bonacich. Power and centrality: A family of measures. American journal of sociology, pages 1170-1182, 1987.
-
(1987)
American Journal of Sociology
, pp. 1170-1182
-
-
Bonacich, P.1
-
5
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
Morgan Kaufmann
-
P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In ICML, pages 82-90. Morgan Kaufmann, 1998.
-
(1998)
ICML
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
7
-
-
85072028231
-
Return of the devil in the details: Delving deep into convolutional nets
-
K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
-
(2014)
BMVC
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
8
-
-
10944231193
-
Comparison of feature ranking methods based on information entropy
-
IEEE
-
W. Duch, T. Wieczorek, J. Biesiada, and M. Blachnik. Comparison of feature ranking methods based on information entropy. In IJCNN, volume 2. IEEE, 2004.
-
(2004)
IJCNN
, vol.2
-
-
Duch, W.1
Wieczorek, T.2
Biesiada, J.3
Blachnik, M.4
-
9
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. G. et al
-
T. R. G. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
-
12
-
-
0024732990
-
Models of incremental concept formation
-
J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept formation. Artif. Intell., 40(1-3):11-61, 1989.
-
(1989)
Artif. Intell
, vol.40
, Issue.1-3
, pp. 11-61
-
-
Gennari, J.H.1
Langley, P.2
Fisher, D.3
-
13
-
-
0036735386
-
Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
-
G. J. Gordon, R. V. Jensen, L. li Hsiao, S. R. Gullans, J. E. Blumenstock, S. Ramaswamy, W. G. Richards, D. J. Sugarbaker, and R. Bueno. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res, 62:4963-4967, 2002.
-
(2002)
Cancer Res
, vol.62
, pp. 4963-4967
-
-
Gordon, G.J.1
Jensen, R.V.2
Li Hsiao, L.3
Gullans, S.R.4
Blumenstock, J.E.5
Ramaswamy, S.6
Richards, W.G.7
Sugarbaker, D.J.8
Bueno, R.9
-
15
-
-
78649999321
-
SVM based feature selection: Why are we using the dual
-
G. L. Grinblat, J. Izetta, and P. M. Granitto. Svm based feature selection: Why are we using the dual? In IBERAMIA, pages 413-422, 2010.
-
(2010)
IBERAMIA
, pp. 413-422
-
-
Grinblat, G.L.1
Izetta, J.2
Granitto, P.M.3
-
16
-
-
84920267674
-
Generalized fisher score for feature selection
-
abs/1202. 3725
-
Q. Gu, Z. Li, and J. Han. Generalized fisher score for feature selection. CoRR, abs/1202. 3725, 2012.
-
(2012)
CoRR
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
18
-
-
33646391384
-
Result analysis of the nips 2003 feature selection challenge
-
I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 feature selection challenge. In NIPS, pages 545-552, 2004.
-
(2004)
NIPS
, pp. 545-552
-
-
Guyon, I.1
Gunn, S.2
Ben-Hur, A.3
Dror, G.4
-
19
-
-
34250885083
-
Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark
-
I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. S. 0004, and M. Uhr. Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark. PRL, 28(12):1438-1444, 2007.
-
(2007)
PRL
, vol.28
, Issue.12
, pp. 1438-1444
-
-
Guyon, I.1
Li, J.2
Mader, T.3
Pletscher, P.A.4
Uhr, M.5
-
20
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Mach. Learn., 46(1-3):389-422, 2002.
-
(2002)
Mach. Learn
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
22
-
-
84959229874
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
abs/1406. 4729
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406. 4729, 2014.
-
(2014)
CoRR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
24
-
-
33144466753
-
One-shot learning of object categories
-
R. P. L. Fei-Fei; Fergus. One-shot learning of object categories. IEEE TPAMI, 28:594-611, 2006.
-
(2006)
IEEE TPAMI
, vol.28
, pp. 594-611
-
-
Fei-Fei, R.P.L.1
Fergus2
-
26
-
-
84868130201
-
Feature selection using counting grids: Application to microarray data
-
P. Lovato, M. Bicego, M. Cristani, N. Jojic, and A. Perina. Feature selection using counting grids: Application to microarray data. LNCS, pages 629-637, 2012.
-
(2012)
LNCS
, pp. 629-637
-
-
Lovato, P.1
Bicego, M.2
Cristani, M.3
Jojic, N.4
Perina, A.5
-
27
-
-
79952059000
-
Fast and accurate digit classification
-
S. Maji and J. Malik. Fast and accurate digit classification. EECS, 2009.
-
(2009)
EECS
-
-
Maji, S.1
Malik, J.2
-
30
-
-
84871021290
-
A novel divide-and-merge classification for high dimensional datasets
-
M. Seo and S. Oh. A novel divide-and-merge classification for high dimensional datasets. Computational biology and chemistry, 42:23-34, 2013.
-
(2013)
Computational Biology and Chemistry
, vol.42
, pp. 23-34
-
-
Seo, M.1
Oh, S.2
-
31
-
-
18244409933
-
Diffuse large B-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning
-
M. A. Shipp, K. N. Ross, P. Tamayo, and e. A. Weng. Diffuse large B-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning. Nature medicine, 8(1):68-74, 2002.
-
(2002)
Nature Medicine
, vol.8
, Issue.1
, pp. 68-74
-
-
Shipp, M.A.1
Ross, K.N.2
Tamayo, P.3
Weng, A.4
-
32
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
U., Alon and N., Barkai and D. A., Notterman and K., Gish and S., Ybarra and D., Mack and A. J., Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. In PNAS, volume 96, pages 6745-6750. 1999.
-
(1999)
PNAS
, vol.96
, pp. 6745-6750
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
Levine, J.A.7
-
33
-
-
84937118999
-
Matconvnet-convolutional neural networks for matlab
-
abs/1412. 4564
-
A. Vedaldi and K. Lenc. Matconvnet-convolutional neural networks for matlab. CoRR, abs/1412. 4564, 2014.
-
(2014)
CoRR
-
-
Vedaldi, A.1
Lenc, K.2
-
34
-
-
84896830762
-
An improved feature selection based on effective range for classification
-
J. Wang, S. Zhou, Y. Yi, and J. Kong. An improved feature selection based on effective range for classification. TSWJ, 2014.
-
(2014)
TSWJ
-
-
Wang, J.1
Zhou, S.2
Yi, Y.3
Kong, J.4
-
35
-
-
84892665985
-
Computing matrix inversion with optical networks
-
K. Wu, C. Soci, P. P. Shum, and N. I. Zheludev. Computing matrix inversion with optical networks. Opt. Express, 22(1):295-304, 2014.
-
(2014)
Opt. Express
, vol.22
, Issue.1
, pp. 295-304
-
-
Wu, K.1
Soci, C.2
Shum, P.P.3
Zheludev, N.I.4
-
36
-
-
81455132651
-
Stable gene selection from microarray data via sample weighting
-
L. Yu, Y. Han, and M. E. Berens. Stable gene selection from microarray data via sample weighting. IEEE/ACM TCBB, 9(1):262-272, 2012.
-
(2012)
IEEE/ACM TCBB
, vol.9
, Issue.1
, pp. 262-272
-
-
Yu, L.1
Han, Y.2
Berens, M.E.3
-
37
-
-
0142233479
-
Robust feature selection using distributions of mutual information
-
M. Zaffalon and M. Hutter. Robust feature selection using distributions of mutual information. In UAI, pages 577-584, 2002.
-
(2002)
UAI
, pp. 577-584
-
-
Zaffalon, M.1
Hutter, M.2
-
38
-
-
84906341064
-
Visualizing and understanding convolutional networks
-
abs/1311. 2901
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311. 2901, 2013.
-
(2013)
CoRR
-
-
Zeiler, M.D.1
Fergus, R.2
-
39
-
-
84858780238
-
Cyclizing clusters via zeta function of a graph
-
D. Zhao and X. Tang. Cyclizing clusters via zeta function of a graph. In NIPS, pages 1953-1960, 2008.
-
(2008)
NIPS
, pp. 1953-1960
-
-
Zhao, D.1
Tang, X.2
-
40
-
-
85027955224
-
Unsupervised feature selection by regularized self-representation
-
P. Zhu, W. Zuo, L. Zhang, Q. Hu, and S. C. Shiu. Unsupervised feature selection by regularized self-representation. Pattern Recognition, 48(2):438-446, 2015.
-
(2015)
Pattern Recognition
, vol.48
, Issue.2
, pp. 438-446
-
-
Zhu, P.1
Zuo, W.2
Zhang, L.3
Hu, Q.4
Shiu, S.C.5
-
41
-
-
84863364326
-
Improving diversity in ranking using absorbing random walks
-
X. Zhu, A. B. Goldberg, J. Van Gael, and D. Andrzejewski. Improving diversity in ranking using absorbing random walks. In HLT-NAACL, pages 97-104, 2007.
-
(2007)
HLT-NAACL
, pp. 97-104
-
-
Zhu, X.1
Goldberg, A.B.2
Van Gael, J.3
Andrzejewski, D.4
|