메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 4202-4210

Infinite feature selection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVERGENCE OF NUMERICAL METHODS; OBJECT RECOGNITION;

EID: 84973897645     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.478     Document Type: Conference Paper
Times cited : (305)

References (41)
  • 1
    • 84973885164 scopus 로고    scopus 로고
    • The benchmark data sets-USPS in semi-supervised learning book
    • The benchmark data sets-USPS in semi-supervised learning book. 2006.
    • (2006)
  • 2
    • 84973921001 scopus 로고    scopus 로고
    • GINA digit recognition database IJCNN
    • GINA digit recognition database IJCNN. 2007.
    • (2007)
  • 3
    • 84973856583 scopus 로고    scopus 로고
    • Ten physical applications of spectral zeta functions
    • E. Bergshoeff. Ten physical applications of spectral zeta functions. CQG, 13(7), 1996.
    • (1996) CQG , vol.13 , Issue.7
    • Bergshoeff, E.1
  • 4
    • 84936824655 scopus 로고
    • Power and centrality: A family of measures
    • P. Bonacich. Power and centrality: A family of measures. American journal of sociology, pages 1170-1182, 1987.
    • (1987) American Journal of Sociology , pp. 1170-1182
    • Bonacich, P.1
  • 5
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • Morgan Kaufmann
    • P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In ICML, pages 82-90. Morgan Kaufmann, 1998.
    • (1998) ICML , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 7
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 8
    • 10944231193 scopus 로고    scopus 로고
    • Comparison of feature ranking methods based on information entropy
    • IEEE
    • W. Duch, T. Wieczorek, J. Biesiada, and M. Blachnik. Comparison of feature ranking methods based on information entropy. In IJCNN, volume 2. IEEE, 2004.
    • (2004) IJCNN , vol.2
    • Duch, W.1    Wieczorek, T.2    Biesiada, J.3    Blachnik, M.4
  • 9
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. R. G. et al
    • T. R. G. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-537, 1999.
    • (1999) Science , vol.286 , pp. 531-537
  • 12
    • 0024732990 scopus 로고
    • Models of incremental concept formation
    • J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept formation. Artif. Intell., 40(1-3):11-61, 1989.
    • (1989) Artif. Intell , vol.40 , Issue.1-3 , pp. 11-61
    • Gennari, J.H.1    Langley, P.2    Fisher, D.3
  • 15
    • 78649999321 scopus 로고    scopus 로고
    • SVM based feature selection: Why are we using the dual
    • G. L. Grinblat, J. Izetta, and P. M. Granitto. Svm based feature selection: Why are we using the dual? In IBERAMIA, pages 413-422, 2010.
    • (2010) IBERAMIA , pp. 413-422
    • Grinblat, G.L.1    Izetta, J.2    Granitto, P.M.3
  • 16
    • 84920267674 scopus 로고    scopus 로고
    • Generalized fisher score for feature selection
    • abs/1202. 3725
    • Q. Gu, Z. Li, and J. Han. Generalized fisher score for feature selection. CoRR, abs/1202. 3725, 2012.
    • (2012) CoRR
    • Gu, Q.1    Li, Z.2    Han, J.3
  • 18
    • 33646391384 scopus 로고    scopus 로고
    • Result analysis of the nips 2003 feature selection challenge
    • I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 feature selection challenge. In NIPS, pages 545-552, 2004.
    • (2004) NIPS , pp. 545-552
    • Guyon, I.1    Gunn, S.2    Ben-Hur, A.3    Dror, G.4
  • 19
    • 34250885083 scopus 로고    scopus 로고
    • Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark
    • I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. S. 0004, and M. Uhr. Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark. PRL, 28(12):1438-1444, 2007.
    • (2007) PRL , vol.28 , Issue.12 , pp. 1438-1444
    • Guyon, I.1    Li, J.2    Mader, T.3    Pletscher, P.A.4    Uhr, M.5
  • 20
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Mach. Learn., 46(1-3):389-422, 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 22
    • 84959229874 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • abs/1406. 4729
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR, abs/1406. 4729, 2014.
    • (2014) CoRR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 24
    • 33144466753 scopus 로고    scopus 로고
    • One-shot learning of object categories
    • R. P. L. Fei-Fei; Fergus. One-shot learning of object categories. IEEE TPAMI, 28:594-611, 2006.
    • (2006) IEEE TPAMI , vol.28 , pp. 594-611
    • Fei-Fei, R.P.L.1    Fergus2
  • 26
    • 84868130201 scopus 로고    scopus 로고
    • Feature selection using counting grids: Application to microarray data
    • P. Lovato, M. Bicego, M. Cristani, N. Jojic, and A. Perina. Feature selection using counting grids: Application to microarray data. LNCS, pages 629-637, 2012.
    • (2012) LNCS , pp. 629-637
    • Lovato, P.1    Bicego, M.2    Cristani, M.3    Jojic, N.4    Perina, A.5
  • 27
    • 79952059000 scopus 로고    scopus 로고
    • Fast and accurate digit classification
    • S. Maji and J. Malik. Fast and accurate digit classification. EECS, 2009.
    • (2009) EECS
    • Maji, S.1    Malik, J.2
  • 30
    • 84871021290 scopus 로고    scopus 로고
    • A novel divide-and-merge classification for high dimensional datasets
    • M. Seo and S. Oh. A novel divide-and-merge classification for high dimensional datasets. Computational biology and chemistry, 42:23-34, 2013.
    • (2013) Computational Biology and Chemistry , vol.42 , pp. 23-34
    • Seo, M.1    Oh, S.2
  • 31
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning
    • M. A. Shipp, K. N. Ross, P. Tamayo, and e. A. Weng. Diffuse large B-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning. Nature medicine, 8(1):68-74, 2002.
    • (2002) Nature Medicine , vol.8 , Issue.1 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3    Weng, A.4
  • 32
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U., Alon and N., Barkai and D. A., Notterman and K., Gish and S., Ybarra and D., Mack and A. J., Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. In PNAS, volume 96, pages 6745-6750. 1999.
    • (1999) PNAS , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, J.A.7
  • 33
    • 84937118999 scopus 로고    scopus 로고
    • Matconvnet-convolutional neural networks for matlab
    • abs/1412. 4564
    • A. Vedaldi and K. Lenc. Matconvnet-convolutional neural networks for matlab. CoRR, abs/1412. 4564, 2014.
    • (2014) CoRR
    • Vedaldi, A.1    Lenc, K.2
  • 34
    • 84896830762 scopus 로고    scopus 로고
    • An improved feature selection based on effective range for classification
    • J. Wang, S. Zhou, Y. Yi, and J. Kong. An improved feature selection based on effective range for classification. TSWJ, 2014.
    • (2014) TSWJ
    • Wang, J.1    Zhou, S.2    Yi, Y.3    Kong, J.4
  • 35
    • 84892665985 scopus 로고    scopus 로고
    • Computing matrix inversion with optical networks
    • K. Wu, C. Soci, P. P. Shum, and N. I. Zheludev. Computing matrix inversion with optical networks. Opt. Express, 22(1):295-304, 2014.
    • (2014) Opt. Express , vol.22 , Issue.1 , pp. 295-304
    • Wu, K.1    Soci, C.2    Shum, P.P.3    Zheludev, N.I.4
  • 36
    • 81455132651 scopus 로고    scopus 로고
    • Stable gene selection from microarray data via sample weighting
    • L. Yu, Y. Han, and M. E. Berens. Stable gene selection from microarray data via sample weighting. IEEE/ACM TCBB, 9(1):262-272, 2012.
    • (2012) IEEE/ACM TCBB , vol.9 , Issue.1 , pp. 262-272
    • Yu, L.1    Han, Y.2    Berens, M.E.3
  • 37
    • 0142233479 scopus 로고    scopus 로고
    • Robust feature selection using distributions of mutual information
    • M. Zaffalon and M. Hutter. Robust feature selection using distributions of mutual information. In UAI, pages 577-584, 2002.
    • (2002) UAI , pp. 577-584
    • Zaffalon, M.1    Hutter, M.2
  • 38
    • 84906341064 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • abs/1311. 2901
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311. 2901, 2013.
    • (2013) CoRR
    • Zeiler, M.D.1    Fergus, R.2
  • 39
    • 84858780238 scopus 로고    scopus 로고
    • Cyclizing clusters via zeta function of a graph
    • D. Zhao and X. Tang. Cyclizing clusters via zeta function of a graph. In NIPS, pages 1953-1960, 2008.
    • (2008) NIPS , pp. 1953-1960
    • Zhao, D.1    Tang, X.2
  • 40
    • 85027955224 scopus 로고    scopus 로고
    • Unsupervised feature selection by regularized self-representation
    • P. Zhu, W. Zuo, L. Zhang, Q. Hu, and S. C. Shiu. Unsupervised feature selection by regularized self-representation. Pattern Recognition, 48(2):438-446, 2015.
    • (2015) Pattern Recognition , vol.48 , Issue.2 , pp. 438-446
    • Zhu, P.1    Zuo, W.2    Zhang, L.3    Hu, Q.4    Shiu, S.C.5
  • 41
    • 84863364326 scopus 로고    scopus 로고
    • Improving diversity in ranking using absorbing random walks
    • X. Zhu, A. B. Goldberg, J. Van Gael, and D. Andrzejewski. Improving diversity in ranking using absorbing random walks. In HLT-NAACL, pages 97-104, 2007.
    • (2007) HLT-NAACL , pp. 97-104
    • Zhu, X.1    Goldberg, A.B.2    Van Gael, J.3    Andrzejewski, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.