메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 73-81

Dynamic texture recognition via orthogonal tensor dictionary learning

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; CODES (SYMBOLS); COMPUTER VISION; LEARNING SYSTEMS; PATTERN RECOGNITION; SCALABILITY; TENSORS;

EID: 84973880407     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.17     Document Type: Conference Paper
Times cited : (71)

References (48)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • 1, 2, 3
    • M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54 (11): 4311-4322, 2006. 1, 2, 3
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 84898778269 scopus 로고    scopus 로고
    • Fast sparsity-based orthogonal dictionary learning for image restoration
    • IEEE
    • C. Bao, J.-F. Cai, and H. Ji. Fast sparsity-based orthogonal dictionary learning for image restoration. In ICCV, pages 3384-3391. IEEE, 2013. 3
    • (2013) ICCV , vol.3 , pp. 3384-3391
    • Bao, C.1    Cai, J.-F.2    Ji, H.3
  • 3
    • 84925290196 scopus 로고    scopus 로고
    • Convergence analysis for iterative data-driven tight frame construction scheme
    • C. Bao, H. Ji, and Z. Shen. Convergence analysis for iterative data-driven tight frame construction scheme. Applied and Computational Harmonic Analysis, 38 (3): 510-523, 2015. 3
    • (2015) Applied and Computational Harmonic Analysis , vol.38 , Issue.3 , pp. 510-523
    • Bao, C.1    Ji, H.2    Shen, Z.3
  • 5
    • 34948905805 scopus 로고    scopus 로고
    • Classifying video with kernel dynamic textures
    • 2, 5, 6
    • A. B. Chan and N. Vasconcelos. Classifying video with kernel dynamic textures. In ICPR, pages 1-6, 2007. 2, 5, 6
    • (2007) ICPR , pp. 1-6
    • Chan, A.B.1    Vasconcelos, N.2
  • 6
    • 46749152847 scopus 로고    scopus 로고
    • On motion periodicity of dynamic textures
    • D. Chetverikov and S. Fazekas. On motion periodicity of dynamic textures. In BMVC, pages 167-176, 2006. 1
    • (2006) BMVC , vol.1 , pp. 167-176
    • Chetverikov, D.1    Fazekas, S.2
  • 7
    • 34047236115 scopus 로고    scopus 로고
    • A brief survey of dynamic texture description and recognition
    • Springer
    • D. Chetverikov and R. Péteri. A brief survey of dynamic texture description and recognition. In Computer Recognition Systems, pages 17-26. Springer, 2005. 2
    • (2005) Computer Recognition Systems , vol.2 , pp. 17-26
    • Chetverikov, D.1    Péteri, R.2
  • 9
    • 84866657728 scopus 로고    scopus 로고
    • Dynamic scene understanding: The role of orientation features in space and time in scene classification
    • IEEE
    • K. G. Derpanis, M. Lecce, K. Daniilidis, and R. P. Wildes. Dynamic scene understanding: The role of orientation features in space and time in scene classification. In CVPR, pages 1306-1313. IEEE, 2012. 2
    • (2012) CVPR , vol.2 , pp. 1306-1313
    • Derpanis, K.G.1    Lecce, M.2    Daniilidis, K.3    Wildes, R.P.4
  • 10
    • 77956000511 scopus 로고    scopus 로고
    • Dynamic texture recognition based on distributions of spacetime oriented structure
    • IEEE, 1, 2, 5, 6
    • K. G. Derpanis and R. P. Wildes. Dynamic texture recognition based on distributions of spacetime oriented structure. In CVPR, pages 191-198. IEEE, 2010. 1, 2, 5, 6
    • (2010) CVPR , pp. 191-198
    • Derpanis, K.G.1    Wildes, R.P.2
  • 11
    • 84860234501 scopus 로고    scopus 로고
    • Spacetime texture representation and recognition based on a spatiotemporal orientation analysis
    • 2, 6
    • K. G. Derpanis and R. P. Wildes. Spacetime texture representation and recognition based on a spatiotemporal orientation analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (6): 1193-1205, 2012. 2, 6
    • (2012) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.34 , Issue.6 , pp. 1193-1205
    • Derpanis, K.G.1    Wildes, R.P.2
  • 13
    • 0344120639 scopus 로고    scopus 로고
    • Dynamic texture segmentation
    • IEEE
    • G. Doretto, D. Cremers, P. Favaro, and S. Soatto. Dynamic texture segmentation. In ICCV, pages 1236-1242. IEEE, 2003. 1
    • (2003) ICCV , vol.1 , pp. 1236-1242
    • Doretto, G.1    Cremers, D.2    Favaro, P.3    Soatto, S.4
  • 14
    • 33745870539 scopus 로고    scopus 로고
    • Spatially homogeneous dynamic textures
    • Springer, 1, 2
    • G. Doretto, E. Jones, and S. Soatto. Spatially homogeneous dynamic textures. In ECCV, pages 591-602. Springer, 2004. 1, 2
    • (2004) ECCV , pp. 591-602
    • Doretto, G.1    Jones, E.2    Soatto, S.3
  • 15
    • 84874557115 scopus 로고    scopus 로고
    • Kcpd: Learning of overcomplete dictionaries for tensor sparse coding
    • IEEE, 2, 7
    • G. Duan, H. Wang, Z. Liu, J. Deng, and Y.-W. Chen. Kcpd: Learning of overcomplete dictionaries for tensor sparse coding. In ICPR, pages 493-496. IEEE, 2012. 2, 7
    • (2012) ICPR , pp. 493-496
    • Duan, G.1    Wang, H.2    Liu, Z.3    Deng, J.4    Chen, Y.-W.5
  • 16
    • 84901378964 scopus 로고    scopus 로고
    • Characterization and recognition of dynamic textures based on the 2d+ t curvelet transform
    • 2, 7
    • S. Dubois, R. Péteri, and M. Ménard. Characterization and recognition of dynamic textures based on the 2d+ t curvelet transform. Signal, Image and Video Processing, pages 1-12, 2013. 2, 7
    • (2013) Signal, Image and Video Processing , pp. 1-12
    • Dubois, S.1    Péteri, R.2    Ménard, M.3
  • 17
    • 46749154261 scopus 로고    scopus 로고
    • Dynamic texture recognition using optical flow features and temporal periodicity
    • IEEE
    • S. Fazekas and D. Chetverikov. Dynamic texture recognition using optical flow features and temporal periodicity. In International CBMI Workshop, pages 25-32. IEEE, 2007. 1
    • (2007) International CBMI Workshop , vol.1 , pp. 25-32
    • Fazekas, S.1    Chetverikov, D.2
  • 18
    • 50649103305 scopus 로고    scopus 로고
    • Phase based modelling of dynamic textures
    • IEEE, 1, 2
    • B. Ghanem and N. Ahuja. Phase based modelling of dynamic textures. In ICCV, pages 1-8. IEEE, 2007. 1, 2
    • (2007) ICCV , pp. 1-8
    • Ghanem, B.1    Ahuja, N.2
  • 19
    • 78149341376 scopus 로고    scopus 로고
    • Maximum margin distance learning for dynamic texture recognition
    • Springer, 1, 2, 6
    • B. Ghanem and N. Ahuja. Maximum margin distance learning for dynamic texture recognition. In ECCV, pages 223-236. Springer, 2010. 1, 2, 6
    • (2010) ECCV , pp. 223-236
    • Ghanem, B.1    Ahuja, N.2
  • 20
    • 78149476550 scopus 로고    scopus 로고
    • Sparse coding of linear dynamical systems with an application to dynamic texture recognition
    • IEEE
    • B. Ghanem and N. Ahuja. Sparse coding of linear dynamical systems with an application to dynamic texture recognition. In ICPR, pages 987-990. IEEE, 2010. 2
    • (2010) ICPR , vol.2 , pp. 987-990
    • Ghanem, B.1    Ahuja, N.2
  • 22
    • 84898801687 scopus 로고    scopus 로고
    • Dictionary learning and sparse coding on grassmann manifolds: An extrinsic solution
    • IEEE, 2, 6, 7
    • M. Harandi, C. Sanderson, C. Shen, and B. Lovell. Dictionary learning and sparse coding on grassmann manifolds: An extrinsic solution. In ICCV, pages 3120-3127. IEEE, 2013. 2, 6, 7
    • (2013) ICCV , pp. 3120-3127
    • Harandi, M.1    Sanderson, C.2    Shen, C.3    Lovell, B.4
  • 23
    • 84887354448 scopus 로고    scopus 로고
    • Separable dictionary learning
    • IEEE, 2
    • S. Hawe, M. Seibert, and M. Kleinsteuber. Separable dictionary learning. In ICPR, pages 438-445. IEEE, 2013. 2
    • (2013) ICPR , pp. 438-445
    • Hawe, S.1    Seibert, M.2    Kleinsteuber, M.3
  • 24
    • 33745944718 scopus 로고    scopus 로고
    • Sparse image coding using a 3d non-negative tensor factorization
    • IEEE, 1, 2
    • T. Hazan, S. Polak, and A. Shashua. Sparse image coding using a 3d non-negative tensor factorization. In ICCV, volume 1, pages 50-57. IEEE, 2005. 1, 2
    • (2005) ICCV , vol.1 , pp. 50-57
    • Hazan, T.1    Polak, S.2    Shashua, A.3
  • 25
    • 84871657544 scopus 로고    scopus 로고
    • Wavelet domain multifractal analysis for static and dynamic texture classification
    • 2, 6
    • H. Ji, X. Yang, H. Ling, and Y. Xu. Wavelet domain multifractal analysis for static and dynamic texture classification. IEEE Transactions on Image Processing, 22 (1): 286-299, 2013. 2, 6
    • (2013) IEEE Transactions on Image Processing , vol.22 , Issue.1 , pp. 286-299
    • Ji, H.1    Yang, X.2    Ling, H.3    Xu, Y.4
  • 27
    • 84911381378 scopus 로고    scopus 로고
    • Decomposable nonlocal tensor dictionary learning for multispectral image denoising
    • IEEE
    • Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang. Decomposable nonlocal tensor dictionary learning for multispectral image denoising. In ICPR, pages 2949-2956. IEEE, 2014. 2
    • (2014) ICPR , vol.2 , pp. 2949-2956
    • Peng, Y.1    Meng, D.2    Xu, Z.3    Gao, C.4    Yang, Y.5    Zhang, B.6
  • 28
    • 25144440397 scopus 로고    scopus 로고
    • Dynamic texture recognition using normal flow and texture regularity
    • 1, 2, 6
    • R. Péteri and D. Chetverikov. Dynamic texture recognition using normal flow and texture regularity. Pattern Recognition and Image Analysis, pages 223-230, 2005. 1, 2, 6
    • (2005) Pattern Recognition and Image Analysis , pp. 223-230
    • Péteri, R.1    Chetverikov, D.2
  • 29
    • 77955551364 scopus 로고    scopus 로고
    • DynTex : A comprehensive database of dynamic textures
    • 5, 6, 7
    • R. Péteri, S. Fazekas, and M. J. Huiskes. DynTex : A Comprehensive Database of Dynamic Textures. Pattern Recognition Letters, 31: 1627-1632, 2010. 5, 6, 7
    • (2010) Pattern Recognition Letters , vol.31 , pp. 1627-1632
    • Péteri, R.1    Fazekas, S.2    Huiskes, M.J.3
  • 32
    • 70450184786 scopus 로고    scopus 로고
    • View-invariant dynamic texture recognition using a bag of dynamical systems
    • IEEE, 2, 6
    • A. Ravichandran, R. Chaudhry, and R. Vidal. View-invariant dynamic texture recognition using a bag of dynamical systems. In CVPR, pages 1651-1657. IEEE, 2009. 2, 6
    • (2009) CVPR , pp. 1651-1657
    • Ravichandran, A.1    Chaudhry, R.2    Vidal, R.3
  • 33
    • 84887353151 scopus 로고    scopus 로고
    • Learning separable filters
    • IEEE
    • R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua. Learning separable filters. In ICPR, pages 2754-2761. IEEE, 2013. 2
    • (2013) ICPR , vol.2 , pp. 2754-2761
    • Rigamonti, R.1    Sironi, A.2    Lepetit, V.3    Fua, P.4
  • 34
    • 84905216167 scopus 로고    scopus 로고
    • Tensor-based algorithms for learning multidimensional separable dictionaries
    • IEEE, 2, 7
    • F. Roemer, G. Del Galdo, and M. Haardt. Tensor-based algorithms for learning multidimensional separable dictionaries. In ICASSP, pages 3963-3967. IEEE, 2014. 2, 7
    • (2014) ICASSP , pp. 3963-3967
    • Roemer, F.1    Del Galdo, G.2    Haardt, M.3
  • 35
    • 0035684305 scopus 로고    scopus 로고
    • Dynamic texture recognition
    • IEEE, 1, 2
    • P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto. Dynamic texture recognition. In CVPR, volume 2, pages II-58. IEEE, 2001. 1, 2
    • (2001) CVPR , vol.2 , pp. II-58
    • Saisan, P.1    Doretto, G.2    Wu, Y.N.3    Soatto, S.4
  • 36
    • 78149295108 scopus 로고    scopus 로고
    • Tensor sparse coding for region covariances
    • Springer
    • R. Sivalingam, D. Boley, V. Morellas, and N. Papanikolopoulos. Tensor sparse coding for region covariances. In ECCV, pages 722-735. Springer, 2010. 1
    • (2010) ECCV , vol.1 , pp. 722-735
    • Sivalingam, R.1    Boley, D.2    Morellas, V.3    Papanikolopoulos, N.4
  • 37
    • 0036447840 scopus 로고    scopus 로고
    • Video texture indexing using spatio-temporal wavelets
    • IEEE, 1
    • J. R. Smith, C.-Y. Lin, and M. Naphade. Video texture indexing using spatio-temporal wavelets. In ICIP, volume 2, pages II-437. IEEE, 2002. 1
    • (2002) ICIP , vol.2 , pp. II-437
    • Smith, J.R.1    Lin, C.-Y.2    Naphade, M.3
  • 38
    • 0030399732 scopus 로고    scopus 로고
    • Temporal texture modeling
    • IEEE, 1, 2
    • M. Szummer and R. W. Picard. Temporal texture modeling. In ICIP, volume 3, pages 823-826. IEEE, 1996. 1, 2
    • (1996) ICIP , vol.3 , pp. 823-826
    • Szummer, M.1    Picard, R.W.2
  • 39
    • 84905222845 scopus 로고    scopus 로고
    • An adaptive dictionary learning approach for modeling dynamical textures
    • May, 1, 2
    • X. Wei, H. Shen, and M. Kleinsteuber. An adaptive dictionary learning approach for modeling dynamical textures. In ICASSP, pages 3567-3571, May 2014. 1, 2
    • (2014) ICASSP , pp. 3567-3571
    • Wei, X.1    Shen, H.2    Kleinsteuber, M.3
  • 40
    • 84931043555 scopus 로고    scopus 로고
    • Qualitative spatiotemporal analysis using an oriented energy representation
    • Springer
    • R. P. Wildes and J. R. Bergen. Qualitative spatiotemporal analysis using an oriented energy representation. In ECCV, pages 768-784. Springer, 2000. 2
    • (2000) ECCV , vol.2 , pp. 768-784
    • Wildes, R.P.1    Bergen, J.R.2
  • 41
    • 33745832325 scopus 로고    scopus 로고
    • Shift-invariant dynamic texture recognition
    • Springer, 2, 6
    • F. Woolfe and A. Fitzgibbon. Shift-invariant dynamic texture recognition. In ECCV, pages 549-562. Springer, 2006. 2, 6
    • (2006) ECCV , pp. 549-562
    • Woolfe, F.1    Fitzgibbon, A.2
  • 42
    • 84555189881 scopus 로고    scopus 로고
    • Dynamic texture reconstruction from sparse codes for unusual event detection in crowded scenes
    • ACM
    • J. Xu, S. Denman, S. Sridharan, C. Fookes, and R. Rana. Dynamic texture reconstruction from sparse codes for unusual event detection in crowded scenes. In J-MRE, pages 25-30. ACM, 2011. 1
    • (2011) J-MRE , vol.1 , pp. 25-30
    • Xu, J.1    Denman, S.2    Sridharan, S.3    Fookes, C.4    Rana, R.5
  • 44
    • 84863024281 scopus 로고    scopus 로고
    • Dynamic texture classification using dynamic fractal analysis
    • 1, 2, 5, 6. IEEE
    • Y. Xu, Y. Quan, H. Ling, and H. Ji. Dynamic texture classification using dynamic fractal analysis. In ICCV, pages 1219-1226. IEEE, 2011. 1, 2, 5, 6
    • (2011) ICCV , pp. 1219-1226
    • Xu, Y.1    Quan, Y.2    Ling, H.3    Ji, H.4
  • 45
    • 84898454141 scopus 로고    scopus 로고
    • Discriminative tensor sparse coding for image classification
    • BMVA Press
    • L. D. Yangmuzi Zhang, Zhuolin Jiang. Discriminative tensor sparse coding for image classification. In BMVC. BMVA Press, 2013. 1, 2
    • (2013) BMVC , vol.1 , pp. 2
    • Yangmuzi Zhang, L.D.1    Jiang, Z.2
  • 46
    • 34247557079 scopus 로고    scopus 로고
    • Dynamic texture recognition using local binary patterns with an application to facial expressions
    • 1, 2, 7
    • G. Zhao and M. Pietikainen. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (6): 915-928, 2007. 1, 2, 7
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.6 , pp. 915-928
    • Zhao, G.1    Pietikainen, M.2
  • 47
    • 49949119898 scopus 로고    scopus 로고
    • Dynamic texture recognition using volume local binary patterns
    • Springer, 2, 5, 6
    • G. Zhao and M. Pietikäinen. Dynamic texture recognition using volume local binary patterns. In Dynamical Vision, pages 165-177. Springer, 2007. 2, 5, 6
    • (2007) Dynamical Vision , pp. 165-177
    • Zhao, G.1    Pietikäinen, M.2
  • 48
    • 84940740233 scopus 로고    scopus 로고
    • Signal classification based on blocksparse tensor representation
    • IEEE
    • S. Zubair andW. Wang. Signal classification based on blocksparse tensor representation. In DSP, pages 361-365. IEEE, 2014. 1
    • (2014) DSP , vol.1 , pp. 361-365
    • Zubair, S.1    Wang, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.