메뉴 건너뛰기




Volumn 366, Issue , 2016, Pages 134-149

Cost-sensitive feature selection based on adaptive neighborhood granularity with multi-level confidence

Author keywords

Cost sensitive learning; Feature selection; Granular computing; Neighborhood granularity; Neighborhood rough sets

Indexed keywords

COSTS; ECONOMIC AND SOCIAL EFFECTS; FEATURE EXTRACTION; GRANULAR COMPUTING; ROUGH SET THEORY;

EID: 84973522069     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2016.05.025     Document Type: Article
Times cited : (75)

References (52)
  • 4
    • 77956059612 scopus 로고    scopus 로고
    • Qualitative test-cost sensitive classification
    • M. Cebe, and C.G. Demir Qualitative test-cost sensitive classification Pattern Recognit. Lett. 31 13 2010 2043 2051
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.13 , pp. 2043-2051
    • Cebe, M.1    Demir, C.G.2
  • 5
    • 33745782098 scopus 로고    scopus 로고
    • Uncertain data mining: An example in clustering location data
    • Chau M,; Cheng R,; Kao B,; and Ng J. Uncertain data mining: an example in clustering location data Adv. Knowl. Discov. Data Min. 3918 2006 199 204
    • (2006) Adv. Knowl. Discov. Data Min. , vol.3918 , pp. 199-204
    • Chau, M.1    Cheng, R.2    Kao, B.3    Ng, J.4
  • 6
    • 72449177821 scopus 로고    scopus 로고
    • A rough set approach to feature selection based on ant colony optimization
    • Chen Y.M,; Miao D.Q,; and Wang R.Z. A rough set approach to feature selection based on ant colony optimization Pattern Recognit. Lett. 31 3 2010 226 233
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.3 , pp. 226-233
    • Chen, Y.M.1    Miao, D.Q.2    Wang, R.Z.3
  • 8
    • 84868698046 scopus 로고    scopus 로고
    • Granular modelling of signals: A framework of granular computing
    • A. Gacek Granular modelling of signals: a framework of granular computing Inf. Sci. 221 2013 1 11
    • (2013) Inf. Sci. , vol.221 , pp. 1-11
    • Gacek, A.1
  • 9
    • 33749512011 scopus 로고    scopus 로고
    • A granular description of ECG signals
    • A. Gacek, and W. Pedrycz A granular description of ecg signals IEEE Trans. Biomed. Eng. 53 10 2006 1972 1982
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , Issue.10 , pp. 1972-1982
    • Gacek, A.1    Pedrycz, W.2
  • 10
    • 0023049334 scopus 로고
    • Confidence intervals rather than p values: Estimation rather than hypothesis testing
    • M.J. Gardner, and D.G. Altman Confidence intervals rather than p values: estimation rather than hypothesis testing BMJ 292 6522 1986 746 750
    • (1986) BMJ , vol.292 , Issue.6522 , pp. 746-750
    • Gardner, M.J.1    Altman, D.G.2
  • 11
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • M. Hall, and G. Holmes Benchmarking attribute selection techniques for discrete class data mining IEEE Trans. Knowl. Data Eng. 15 6 2003 1437 1447
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , Issue.6 , pp. 1437-1447
    • Hall, M.1    Holmes, G.2
  • 12
    • 79952312047 scopus 로고    scopus 로고
    • An efficient gene selection technique for cancer recognition based on neighborhood mutual information
    • Hu Q.H,; Pan W,; An S,; Ma P.J,; and Wei J.M. An efficient gene selection technique for cancer recognition based on neighborhood mutual information Int. J. Mach. Learn. Cybern. 1 1-4 2010 63 74
    • (2010) Int. J. Mach. Learn. Cybern. , vol.1 , Issue.1-4 , pp. 63-74
    • Hu, Q.H.1    Pan, W.2    An, S.3    Ma, P.J.4    Wei, J.M.5
  • 13
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Hu Q.H,; Yu D.R,; Liu J.F,; and Wu C. Neighborhood rough set based heterogeneous feature subset selection Inf. Sci. 178 18 2008 3577 3594
    • (2008) Inf. Sci. , vol.178 , Issue.18 , pp. 3577-3594
    • Hu, Q.H.1    Yu, D.R.2    Liu, J.F.3    Wu, C.4
  • 14
  • 15
    • 33846274880 scopus 로고    scopus 로고
    • Cost-sensitive feature acquisition and classification
    • Ji S,; and L. Carin Cost-sensitive feature acquisition and classification Pattern Recognit. 40 5 2007 1474 1485
    • (2007) Pattern Recognit. , vol.40 , Issue.5 , pp. 1474-1485
    • Ji, S.1    Carin, L.2
  • 16
    • 84867583002 scopus 로고    scopus 로고
    • Minimum cost attribute reduction in decision-theoretic rough set model
    • Jia X.Y,; Liao W.H,; Tang Z.M,; and Shang L. Minimum cost attribute reduction in decision-theoretic rough set model Inf. Sci. 219 2013 151 167
    • (2013) Inf. Sci. , vol.219 , pp. 151-167
    • Jia, X.Y.1    Liao, W.H.2    Tang, Z.M.3    Shang, L.4
  • 18
    • 70349766835 scopus 로고    scopus 로고
    • A granularity-based framework of deduction, induction, and abduction
    • Y. Kudo, T. Murai, and S. Akama A granularity-based framework of deduction, induction, and abduction Int. J. Approx. Reason. 50 8 2009 1215 1226
    • (2009) Int. J. Approx. Reason. , vol.50 , Issue.8 , pp. 1215-1226
    • Kudo, Y.1    Murai, T.2    Akama, S.3
  • 19
    • 84938559279 scopus 로고    scopus 로고
    • A novel neighborhood rough set based classification approach for medical diagnosis
    • S.U. Kumar, and H.H. Inbarani A novel neighborhood rough set based classification approach for medical diagnosis Proc. Comput. Sci. 47 2015 351 359
    • (2015) Proc. Comput. Sci. , vol.47 , pp. 351-359
    • Kumar, S.U.1    Inbarani, H.H.2
  • 20
    • 84922434280 scopus 로고    scopus 로고
    • Concept learning via granular computing: A cognitive viewpoint
    • Li J.H,; Mei C.L,; Xu W.H,; and Qian Y.H. Concept learning via granular computing: a cognitive viewpoint Inf. Sci. 298 2015 447 467
    • (2015) Inf. Sci. , vol.298 , pp. 447-467
    • Li, J.H.1    Mei, C.L.2    Xu, W.H.3    Qian, Y.H.4
  • 21
    • 84973517825 scopus 로고    scopus 로고
    • An exponent weighted algorithm for minimal cost feature selection
    • Li X.J,; Zhao H,; and Zhu W. An exponent weighted algorithm for minimal cost feature selection Int. J. Mach. Learn. Cybern. 2014 1 10
    • (2014) Int. J. Mach. Learn. Cybern. , pp. 1-10
    • Li, X.J.1    Zhao, H.2    Zhu, W.3
  • 23
    • 84898797239 scopus 로고    scopus 로고
    • Quick attribute reduct algorithm for neighborhood rough set model
    • Liu Y,; Huang W.L,; Jiang Y.L,; and Zeng Z.Y. Quick attribute reduct algorithm for neighborhood rough set model Inf. Sci. 271 2014 65 81
    • (2014) Inf. Sci. , vol.271 , pp. 65-81
    • Liu, Y.1    Huang, W.L.2    Jiang, Y.L.3    Zeng, Z.Y.4
  • 24
    • 79960290370 scopus 로고    scopus 로고
    • Test-cost-sensitive attribute reduction
    • Min F,; He H.P,; Qian Y.H,; and Zhu W. Test-cost-sensitive attribute reduction Inf. Sci. 181 2011 4928 4942
    • (2011) Inf. Sci. , vol.181 , pp. 4928-4942
    • Min, F.1    He, H.P.2    Qian, Y.H.3    Zhu, W.4
  • 25
    • 67349214027 scopus 로고    scopus 로고
    • A hierarchical model for test-cost-sensitive decision systems
    • Min F,; and Liu Q.H. A hierarchical model for test-cost-sensitive decision systems Inf. Sci. 179 2009 2442 2452
    • (2009) Inf. Sci. , vol.179 , pp. 2442-2452
    • Min, F.1    Liu, Q.H.2
  • 26
    • 84862895108 scopus 로고    scopus 로고
    • Attribute reduction of data with error ranges and test costs
    • Min F,; and Zhu W. Attribute reduction of data with error ranges and test costs Inf. Sci. 211 2012 48 67
    • (2012) Inf. Sci. , vol.211 , pp. 48-67
    • Min, F.1    Zhu, W.2
  • 30
    • 84960100750 scopus 로고    scopus 로고
    • Hierarchical granular clustering: An emergence of information granules of higher type and higher order
    • W. Pedrycz, R. Al-Hmouz, A.S. Balamash, and A. Morfeq Hierarchical granular clustering: an emergence of information granules of higher type and higher order IEEE Trans. Fuzzy Syst. 23 6 2015 2270 2283
    • (2015) IEEE Trans. Fuzzy Syst. , vol.23 , Issue.6 , pp. 2270-2283
    • Pedrycz, W.1    Al-Hmouz, R.2    Balamash, A.S.3    Morfeq, A.4
  • 31
    • 73149118678 scopus 로고    scopus 로고
    • MGRS: A multi-granulation rough set
    • Qian Y,; Liang J,; Yao Y,; and Dang C. MGRS: a multi-granulation rough set Inf. Sci. 180 2010 949 970
    • (2010) Inf. Sci. , vol.180 , pp. 949-970
    • Qian, Y.1    Liang, J.2    Yao, Y.3    Dang, C.4
  • 32
    • 13544276223 scopus 로고    scopus 로고
    • Cost-sensitive learning and decision making revisited
    • S. Viaene, and G. Dedene Cost-sensitive learning and decision making revisited Eur. J. Oper. Res. 166 1 2005 212 220
    • (2005) Eur. J. Oper. Res. , vol.166 , Issue.1 , pp. 212-220
    • Viaene, S.1    Dedene, G.2
  • 33
    • 84929080211 scopus 로고    scopus 로고
    • Determining decision makers' weights in group ranking: A granular computing method
    • Wang B,; Liang J,; and Qian Y. Determining decision makers' weights in group ranking: a granular computing method Int. J. Mach. Learn. Cybern. 6 3 2014 511 521
    • (2014) Int. J. Mach. Learn. Cybern. , vol.6 , Issue.3 , pp. 511-521
    • Wang, B.1    Liang, J.2    Qian, Y.3
  • 34
    • 77649237177 scopus 로고    scopus 로고
    • Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction
    • Wang S.L,; Li X.L,; Zhang S.W,; Gui J,; and Huang D.S. Tumor classification by combining PNN classifier ensemble with neighborhood rough set based gene reduction Comput. Biol. Med. 40 2 2010 179 189
    • (2010) Comput. Biol. Med. , vol.40 , Issue.2 , pp. 179-189
    • Wang, S.L.1    Li, X.L.2    Zhang, S.W.3    Gui, J.4    Huang, D.S.5
  • 35
    • 0036646071 scopus 로고    scopus 로고
    • Neighborhood operator systems and approximations
    • Wu W.Z,; and Zhang W.X. Neighborhood operator systems and approximations Inf. Sci. 144 2002 263 282
    • (2002) Inf. Sci. , vol.144 , pp. 263-282
    • Wu, W.Z.1    Zhang, W.X.2
  • 36
    • 33845501387 scopus 로고    scopus 로고
    • 10 challenging problems in data mining research
    • Yang Q,; and Wu X.D. 10 challenging problems in data mining research Int. Jo. Inf. Technol. Decis. Mak. 5 4 2006 597 604
    • (2006) Int. Jo. Inf. Technol. Decis. Mak. , vol.5 , Issue.4 , pp. 597-604
    • Yang, Q.1    Wu, X.D.2
  • 37
    • 79957471167 scopus 로고    scopus 로고
    • Neighborhood systems-based rough sets in incomplete information system
    • Yang X,; Zhang M,; Dou H,; and Yang J. Neighborhood systems-based rough sets in incomplete information system Knowledge-Based Syst. 24 6 2011 858 867
    • (2011) Knowledge-Based Syst. , vol.24 , Issue.6 , pp. 858-867
    • Yang, X.1    Zhang, M.2    Dou, H.3    Yang, J.4
  • 38
    • 0001775050 scopus 로고    scopus 로고
    • Granular computing using neighborhood systems
    • Springer
    • Yao Y.Y. Granular computing using neighborhood systems Advances in Soft Computing 1999 Springer 539 553
    • (1999) Advances in Soft Computing , pp. 539-553
    • Yao, Y.Y.1
  • 41
    • 35048879624 scopus 로고    scopus 로고
    • A partition model of granular computing
    • Yao Y.Y. A partition model of granular computing Trans. Rough Sets I 3100 2004 232 253
    • (2004) Trans. Rough Sets i , vol.3100 , pp. 232-253
    • Yao, Y.Y.1
  • 42
    • 0002263693 scopus 로고
    • Fuzzy sets and information granularity
    • L. Zadeh Fuzzy sets and information granularity Adv. Fuzzy Set Theory Appl. 11 1979 3 18
    • (1979) Adv. Fuzzy Set Theory Appl. , vol.11 , pp. 3-18
    • Zadeh, L.1
  • 43
    • 0003123776 scopus 로고    scopus 로고
    • Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems
    • L. Zadeh Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems Soft Comput. 2 1 1998 23 25
    • (1998) Soft Comput. , vol.2 , Issue.1 , pp. 23-25
    • Zadeh, L.1
  • 44
    • 84936864319 scopus 로고    scopus 로고
    • Three-way recommender systems based on random forests
    • Zhang H.R,; and Min F. Three-way recommender systems based on random forests Knowledge-Based Syst. 91 2016 275 286
    • (2016) Knowledge-Based Syst. , vol.91 , pp. 275-286
    • Zhang, H.R.1    Min, F.2
  • 45
    • 14644418483 scopus 로고    scopus 로고
    • Constructive granular systems with universal approximation and fast knowledge discovery
    • Zhang Y.Q. Constructive granular systems with universal approximation and fast knowledge discovery IEEE Trans. Fuzzy Syst. 13 1 2005 48 57
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.1 , pp. 48-57
    • Zhang, Y.Q.1
  • 46
    • 84886314895 scopus 로고    scopus 로고
    • A backtracking approach to minimal cost feature selection of numerical data
    • Zhao H,; Min F,; and Zhu W. A backtracking approach to minimal cost feature selection of numerical data J. Inf. Comput. Sci. 10 13 2013 4105 4115
    • (2013) J. Inf. Comput. Sci. , vol.10 , Issue.13 , pp. 4105-4115
    • Zhao, H.1    Min, F.2    Zhu, W.3
  • 47
    • 84901588108 scopus 로고    scopus 로고
    • Optimal cost-sensitive granularization based on rough sets for variable costs
    • Zhao H,; and Zhu W. Optimal cost-sensitive granularization based on rough sets for variable costs Knowledge-Based Syst. 65 2014 72 82
    • (2014) Knowledge-Based Syst. , vol.65 , pp. 72-82
    • Zhao, H.1    Zhu, W.2
  • 48
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou Z.H,; and Liu X.Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem IEEE Trans. Knowl. Data Eng. 18 1 2006 63 77
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.H.1    Liu, X.Y.2
  • 49
    • 77955034751 scopus 로고    scopus 로고
    • On multi-class cost-sensitive learning
    • Zhou Z.H,; and Liu X.Y. On multi-class cost-sensitive learning Comput. Intell. 26 3 2010 232 257
    • (2010) Comput. Intell. , vol.26 , Issue.3 , pp. 232-257
    • Zhou, Z.H.1    Liu, X.Y.2
  • 50
    • 84883202893 scopus 로고    scopus 로고
    • Adaptive neighborhood granularity selection and combination based on margin distribution optimization
    • Zhu P.F,; and Hu Q.H. Adaptive neighborhood granularity selection and combination based on margin distribution optimization Inf. Sci. 249 2013 1 12
    • (2013) Inf. Sci. , vol.249 , pp. 1-12
    • Zhu, P.F.1    Hu, Q.H.2
  • 51
    • 34548228836 scopus 로고    scopus 로고
    • Generalized rough sets based on relations
    • Zhu W. Generalized rough sets based on relations Inf. Sci. 177 22 2007 4997 5011
    • (2007) Inf. Sci. , vol.177 , Issue.22 , pp. 4997-5011
    • Zhu, W.1
  • 52
    • 34347243171 scopus 로고    scopus 로고
    • On three types of covering-based rough sets
    • Zhu W,; and Wang F.Y. On three types of covering-based rough sets IEEE Trans. Knowl. Data Eng. 19 8 2007 1131 1144
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.8 , pp. 1131-1144
    • Zhu, W.1    Wang, F.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.