메뉴 건너뛰기




Volumn 11, Issue 6, 2016, Pages

Random forests for global and regional crop yield predictions

Author keywords

[No Author keywords available]

Indexed keywords

CLIMATE; DATA ANALYSIS; ERROR; GRAIN YIELD; HARVEST; MAIZE; MODEL; MULTIPLE LINEAR REGRESSION ANALYSIS; PLANT YIELD; POTATO; PREDICTION; RANDOM FOREST; STATISTICS; WHEAT; CROP; MACHINE LEARNING; THEORETICAL MODEL;

EID: 84973502992     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0156571     Document Type: Article
Times cited : (438)

References (50)
  • 1
    • 54749144203 scopus 로고    scopus 로고
    • Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation
    • Lobell DB, Burke MB. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ Res Lett. 2008; 3(3).
    • (2008) Environ Res Lett. , vol.3 , Issue.3
    • Lobell, D.B.1    Burke, M.B.2
  • 3
    • 77956883074 scopus 로고    scopus 로고
    • On the use of statistical models to predict crop yield responses to climate change
    • Lobell DB, Burke MB. On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology. 2010; 150(11):1443-52.
    • (2010) Agricultural and Forest Meteorology , vol.150 , Issue.11 , pp. 1443-1452
    • Lobell, D.B.1    Burke, M.B.2
  • 4
    • 33646681247 scopus 로고    scopus 로고
    • Decline in rice grain yields with temperature: Models and correlations can give different estimates
    • Sheehy JE, Mitchell PL, Ferrer AB. Decline in rice grain yields with temperature: Models and correlations can give different estimates. Field Crop Res. 2006; 98(2-3):151-6.
    • (2006) Field Crop Res. , vol.98 , Issue.2-3 , pp. 151-156
    • Sheehy, J.E.1    Mitchell, P.L.2    Ferrer, A.B.3
  • 6
    • 33745830853 scopus 로고    scopus 로고
    • Predicting climate-induced range shifts: Model differences and model reliability
    • Lawler JJ, White D, Neilson RP, Blaustein AR. Predicting climate-induced range shifts: model differences and model reliability. Glob Change Biol. 2006; 12(8):1568-84.
    • (2006) Glob Change Biol. , vol.12 , Issue.8 , pp. 1568-1584
    • Lawler, J.J.1    White, D.2    Neilson, R.P.3    Blaustein, A.R.4
  • 7
    • 49249102441 scopus 로고    scopus 로고
    • Machine learning methods without tears: A primer for ecologists
    • PMID: 18605534
    • Olden JD, Lawler JJ, Poff NL. Machine learning methods without tears: A primer for ecologists. Q Rev Biol. 2008; 83(2):171-93. PMID: 18605534
    • (2008) Q Rev Biol. , vol.83 , Issue.2 , pp. 171-193
    • Olden, J.D.1    Lawler, J.J.2    Poff, N.L.3
  • 8
    • 66149110788 scopus 로고    scopus 로고
    • Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change
    • PMID: 19537550
    • Morin X, Thuiller W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology Ecology. 2009; 90(5):1301-13. PMID: 19537550
    • (2009) Ecology Ecology , vol.90 , Issue.5 , pp. 1301-1313
    • Morin, X.1    Thuiller, W.2
  • 9
    • 33645330972 scopus 로고    scopus 로고
    • Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction
    • Prasad A, Iverson L, Liaw A. Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems. 2006; 9(2):181-99.
    • (2006) Ecosystems , vol.9 , Issue.2 , pp. 181-199
    • Prasad, A.1    Iverson, L.2    Liaw, A.3
  • 12
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R, de Andres SA. Gene selection and classification of microarray data using random forest. Bmc Bioinformatics. 2006; 7.
    • (2006) Bmc Bioinformatics , vol.7
    • Diaz-Uriarte, R.1    De Andres, S.A.2
  • 13
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: Exploiting interactions using random forests
    • Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P. Screening large-scale association study data: exploiting interactions using random forests. Bmc Genet. 2004; 5.
    • (2004) Bmc Genet. , vol.5
    • Lunetta, K.L.1    Hayward, L.B.2    Segal, J.3    Van Eerdewegh, P.4
  • 14
  • 15
    • 84870294611 scopus 로고    scopus 로고
    • Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes
    • Fukuda S, Spreer W, Yasunaga E, Yuge K, Sardsud V, Muller J. Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agric Water Manage. 2013; 116:142-50.
    • (2013) Agric Water Manage , vol.116 , pp. 142-150
    • Fukuda, S.1    Spreer, W.2    Yasunaga, E.3    Yuge, K.4    Sardsud, V.5    Muller, J.6
  • 16
    • 84864512878 scopus 로고    scopus 로고
    • High density biomass estimation for wetland vegetation using World-View-2 imagery and random forest regression algorithm
    • Mutanga O, Adam E, Cho MA. High density biomass estimation for wetland vegetation using World-View-2 imagery and random forest regression algorithm. Int J Appl Earth Obs. 2012; 18:399-406.
    • (2012) Int J Appl Earth Obs , vol.18 , pp. 399-406
    • Mutanga, O.1    Adam, E.2    Cho, M.A.3
  • 17
    • 79953029215 scopus 로고    scopus 로고
    • Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy
    • Vincenzi S, Zucchetta M, Franzoi P, Pellizzato M, Pranovi F, De Leo GA, et al. Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecol Model. 2011; 222(8):1471-8.
    • (2011) Ecol Model , vol.222 , Issue.8 , pp. 1471-1478
    • Vincenzi, S.1    Zucchetta, M.2    Franzoi, P.3    Pellizzato, M.4    Pranovi, F.5    De Leo, G.A.6
  • 18
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001; 45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 19
    • 70450064693 scopus 로고    scopus 로고
    • Variable Importance Assessment in Regression: Linear Regression versus Random Forest
    • Gromping U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am Stat. 2009; 63(4):308-19.
    • (2009) Am Stat. , vol.63 , Issue.4 , pp. 308-319
    • Gromping, U.1
  • 22
    • 45449110437 scopus 로고    scopus 로고
    • Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000
    • Monfreda C, Ramankutty N, Foley JA. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles. 2008; 22(1).
    • (2008) Global Biogeochemical Cycles , vol.22 , Issue.1
    • Monfreda, C.1    Ramankutty, N.2    Foley, J.A.3
  • 24
    • 29544443445 scopus 로고    scopus 로고
    • Very high resolution interpolated climate surfaces for global land areas
    • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005; 25(15):1965-78.
    • (2005) Int J Climatol. , vol.25 , Issue.15 , pp. 1965-1978
    • Hijmans, R.J.1    Cameron, S.E.2    Parra, J.L.3    Jones, P.G.4    Jarvis, A.5
  • 25
    • 0003566531 scopus 로고    scopus 로고
    • ANUSPLIN Version 4.3
    • The Australian National University, Centre for Resources and Environmental Studies, Canberra
    • Hutchinson M. ANUSPLIN Version 4.3. User Guide, The Australian National University, Centre for Resources and Environmental Studies, Canberra. 2004.
    • (2004) User Guide
    • Hutchinson, M.1
  • 26
    • 84867333091 scopus 로고    scopus 로고
    • Closing yield gaps through nutrient and water management
    • PMID: 22932270
    • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA. Closing yield gaps through nutrient and water management. Nature. 2012; 490(7419):254-7. doi: 10.1038/nature11420 PMID: 22932270
    • (2012) Nature , vol.490 , Issue.7419 , pp. 254-257
    • Mueller, N.D.1    Gerber, J.S.2    Johnston, M.3    Ray, D.K.4    Ramankutty, N.5    Foley, J.A.6
  • 27
    • 0003804592 scopus 로고    scopus 로고
    • National Agricultural Statistics Service USDoA, editor
    • NASS. Census of Agriculture. In: National Agricultural Statistics Service USDoA, editor. 2015.
    • (2015) Census of Agriculture
    • NASS1
  • 28
    • 84925434753 scopus 로고    scopus 로고
    • Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase
    • Butler EE, Huybers P. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase. Environ Res Lett. 2015; 10(3).
    • (2015) Environ Res Lett. , vol.10 , Issue.3
    • Butler, E.E.1    Huybers, P.2
  • 30
    • 84891887390 scopus 로고    scopus 로고
    • Biophysical Constraints to Potential Production Capacity of Potato across the US Eastern Seaboard Region
    • Resop JP, Fleisher DH, Timlin DJ, Reddy V. Biophysical Constraints to Potential Production Capacity of Potato across the US Eastern Seaboard Region. Agronomy Journal. 2014; 106(1):43-56.
    • (2014) Agronomy Journal , vol.106 , Issue.1 , pp. 43-56
    • Resop, J.P.1    Fleisher, D.H.2    Timlin, D.J.3    Reddy, V.4
  • 31
    • 0003804592 scopus 로고    scopus 로고
    • National Agricultural Statistics Service USDoA, editor
    • NASS. Census of Agriculture. In: National Agricultural Statistics Service USDoA, editor. 2009.
    • (2009) Census of Agriculture
    • NASS1
  • 32
    • 84973481220 scopus 로고    scopus 로고
    • National Agricultural Statistics Service USDoA, editor
    • NASS. 2010 Cropland Data Layer. In: National Agricultural Statistics Service USDoA, editor. 2011.
    • (2011) 2010 Cropland Data Layer
    • NASS1
  • 34
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002; 2(3):18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 36
    • 0019707668 scopus 로고
    • On the validation of models
    • Willmott CJ. On the validation of models. Physical geography. 1981; 2(2):184-94.
    • (1981) Physical Geography , vol.2 , Issue.2 , pp. 184-194
    • Willmott, C.J.1
  • 38
    • 84869019959 scopus 로고    scopus 로고
    • Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM
    • Kim S-H, Yang Y, Timlin DJ, Fleisher DH, Dathe A, Reddy VR, et al. Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM. Agronomy Journal. 2012; 104(6):1523-37.
    • (2012) Agronomy Journal , vol.104 , Issue.6 , pp. 1523-1537
    • Kim, S.-H.1    Yang, Y.2    Timlin, D.J.3    Fleisher, D.H.4    Dathe, A.5    Reddy, V.R.6
  • 39
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause P, Boyle DP, Base F. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences. 2005; 5:89-97.
    • (2005) Advances in Geosciences , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.P.2    Base, F.3
  • 40
    • 35048900518 scopus 로고    scopus 로고
    • Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules
    • Svetnik V, Liaw A, Tong C, Wang T. Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules. Lect Notes Comput Sc. 2004; 3077:334-43.
    • (2004) Lect Notes Comput Sc. , vol.3077 , pp. 334-343
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Wang, T.4
  • 41
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: A classification and regression tool for compound classification and QSAR modeling
    • Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: A classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comp Sci. 2003; 43(6):1947-58.
    • (2003) J Chem Inf Comp Sci. , vol.43 , Issue.6 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.C.4    Sheridan, R.P.5    Feuston, B.P.6
  • 42
    • 28944450149 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions using random decision forest framework
    • PMID: 16234318
    • Chen XW, Liu M. Prediction of protein-protein interactions using random decision forest framework. Bioinformatics. 2005; 21(24):4394-400. PMID: 16234318
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4394-4400
    • Chen, X.W.1    Liu, M.2
  • 43
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat. 2001; 29(5):1189-232.
    • (2001) Ann Stat. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 45
    • 34548127393 scopus 로고    scopus 로고
    • Trends and Variability in U.S. Corn Yields Over the Twentieth Century
    • Kucharik CJ, Ramankutty N. Trends and Variability in U.S. Corn Yields Over the Twentieth Century. Earth Interactions. 2005; 9(1):1-29.
    • (2005) Earth Interactions , vol.9 , Issue.1 , pp. 1-29
    • Kucharik, C.J.1    Ramankutty, N.2
  • 46
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • Breiman L. Statistical modeling: The two cultures. Stat Sci. 2001; 16(3):199-215.
    • (2001) Stat Sci. , vol.16 , Issue.3 , pp. 199-215
    • Breiman, L.1
  • 47
    • 84871834489 scopus 로고    scopus 로고
    • Adaptation of US maize to temperature variations
    • Butler EE, Huybers P. Adaptation of US maize to temperature variations. Nature Climate Change. 2013; 3(1):68-72.
    • (2013) Nature Climate Change , vol.3 , Issue.1 , pp. 68-72
    • Butler, E.E.1    Huybers, P.2
  • 48
    • 0000915516 scopus 로고
    • Heat-stress, plant-available soil-moisture, and corn yields in Iowa: A short-term and longterm view
    • Carlson RE. Heat-stress, plant-available soil-moisture, and corn yields in Iowa: a short-term and longterm view. J Prod Agric. 1990; 3(3):293-7.
    • (1990) J Prod Agric. , vol.3 , Issue.3 , pp. 293-297
    • Carlson, R.E.1
  • 49
    • 70349456137 scopus 로고    scopus 로고
    • Nonlinear temperature effects indicate severe damages to US crop yields under climate change
    • PMID: 19717432
    • Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci U S A. 2009; 106(37):15594-8. doi: 10.1073/pnas.0906865106 PMID: 19717432
    • (2009) Proc Natl Acad Sci U S A , vol.106 , Issue.37 , pp. 15594-15598
    • Schlenker, W.1    Roberts, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.