메뉴 건너뛰기




Volumn 32, Issue , 2016, Pages 281-294

Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process

Author keywords

Gastrointestinal endoscopic image; Joint diagonalisation; Lesion identification; Principal component analysis

Indexed keywords

APPROXIMATION ALGORITHMS; BIOMEDICAL SIGNAL PROCESSING; DISEASES; ENDOSCOPY; EXTRACTION; FEATURE EXTRACTION; ITERATIVE METHODS; LEARNING SYSTEMS; PRINCIPAL COMPONENT ANALYSIS;

EID: 84973344399     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2016.04.007     Document Type: Article
Times cited : (71)

References (29)
  • 3
    • 84871365821 scopus 로고    scopus 로고
    • A review of machine-vision-based analysis of wireless capsule endoscopy video
    • Chen Y., Lee J. A review of machine-vision-based analysis of wireless capsule endoscopy video. Diagn. Ther. Endosc. 2012, 418037.
    • (2012) Diagn. Ther. Endosc. , pp. 418037
    • Chen, Y.1    Lee, J.2
  • 4
    • 84973294042 scopus 로고    scopus 로고
    • Colour image analysis of wireless capsule endoscopy video: a review
    • Springer, Netherlands Berlin, M.E. Celibi (Ed.)
    • Fisher M., Mackiewicz M. Colour image analysis of wireless capsule endoscopy video: a review. Color Medical Image Analysis 2013, 129-144. Springer, Netherlands Berlin. M.E. Celibi (Ed.).
    • (2013) Color Medical Image Analysis , pp. 129-144
    • Fisher, M.1    Mackiewicz, M.2
  • 5
    • 84855920009 scopus 로고    scopus 로고
    • Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review
    • Liedlgruber M., Uhl A. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review. IEEE Rev. Biomed. Eng. 2011, 4(4):73-88.
    • (2011) IEEE Rev. Biomed. Eng. , vol.4 , Issue.4 , pp. 73-88
    • Liedlgruber, M.1    Uhl, A.2
  • 6
    • 82355161022 scopus 로고    scopus 로고
    • Color treatment in endoscopic image classification using multi-scale local color vector patterns
    • Häfner M., Liedlgruber M., Uhl A., Vécsei A., Wrba F. Color treatment in endoscopic image classification using multi-scale local color vector patterns. Med. Image Anal. 2012, 16(1):75-86.
    • (2012) Med. Image Anal. , vol.16 , Issue.1 , pp. 75-86
    • Häfner, M.1    Liedlgruber, M.2    Uhl, A.3    Vécsei, A.4    Wrba, F.5
  • 7
    • 59149094561 scopus 로고    scopus 로고
    • Computer-assisted pit-pattern classification in different wavelet domains for supporting dignity assessment of colonic polyps
    • Häfner M., Kwitt R., Uhl A., Wrba F., Gangl A., Vécsei A. Computer-assisted pit-pattern classification in different wavelet domains for supporting dignity assessment of colonic polyps. Pattern Recog. 2009, 42(6):1180-1191.
    • (2009) Pattern Recog. , vol.42 , Issue.6 , pp. 1180-1191
    • Häfner, M.1    Kwitt, R.2    Uhl, A.3    Wrba, F.4    Gangl, A.5    Vécsei, A.6
  • 8
    • 84875853321 scopus 로고    scopus 로고
    • Scale invariant texture descriptors for classifying celiac disease
    • Hegenbart S., Uhl A., Vécsei A., Wimmer G. Scale invariant texture descriptors for classifying celiac disease. Med. Image Anal. 2013, 17(4):458-474.
    • (2013) Med. Image Anal. , vol.17 , Issue.4 , pp. 458-474
    • Hegenbart, S.1    Uhl, A.2    Vécsei, A.3    Wimmer, G.4
  • 9
    • 84924239622 scopus 로고    scopus 로고
    • Software for enhanced video capsule endoscopy: challenges for essential progress
    • Iakovidis D.K., Koulaouzidis A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastro. Hepat 2015, 12(3):172-186.
    • (2015) Nat. Rev. Gastro. Hepat , vol.12 , Issue.3 , pp. 172-186
    • Iakovidis, D.K.1    Koulaouzidis, A.2
  • 10
    • 33746682430 scopus 로고    scopus 로고
    • An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy
    • Iakovidis D.K., Maroulis D.E., Karkanis S.A. An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput. Biol. Med. 2006, 36(10):1084-1103.
    • (2006) Comput. Biol. Med. , vol.36 , Issue.10 , pp. 1084-1103
    • Iakovidis, D.K.1    Maroulis, D.E.2    Karkanis, S.A.3
  • 12
    • 85032750950 scopus 로고    scopus 로고
    • Linear subspace learning-based dimensionality reduction
    • Jiang X. Linear subspace learning-based dimensionality reduction. IEEE Signal Process. Mag. 2011, 28(2):16-26.
    • (2011) IEEE Signal Process. Mag. , vol.28 , Issue.2 , pp. 16-26
    • Jiang, X.1
  • 13
    • 64849109557 scopus 로고    scopus 로고
    • Asymmetric principal component and discriminant analyses for pattern classification
    • Jiang X. Asymmetric principal component and discriminant analyses for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(5):931-937.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.5 , pp. 931-937
    • Jiang, X.1
  • 15
    • 84860688213 scopus 로고    scopus 로고
    • Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection
    • Li B., Meng M.H. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection. EEE Trans. Inf. Technol. Biomed. 2012, 16(3):323-329.
    • (2012) EEE Trans. Inf. Technol. Biomed. , vol.16 , Issue.3 , pp. 323-329
    • Li, B.1    Meng, M.H.2
  • 16
    • 84921764104 scopus 로고    scopus 로고
    • Automatic detection of early gastrointestinal cancer lesions based on optimal feature extraction from gastroscopic images
    • (7)
    • Liu D.Y., Gan T., Rao N.N., Xu G.G., Zeng B., Li H.L. Automatic detection of early gastrointestinal cancer lesions based on optimal feature extraction from gastroscopic images. J. Med. Imaging Health Inf. 2015, 5(2):296-302. (7).
    • (2015) J. Med. Imaging Health Inf. , vol.5 , Issue.2 , pp. 296-302
    • Liu, D.Y.1    Gan, T.2    Rao, N.N.3    Xu, G.G.4    Zeng, B.5    Li, H.L.6
  • 17
    • 70349562578 scopus 로고    scopus 로고
    • Computer-assisted diagnosis for precancerous lesions in the esophagus
    • Münzenmayer C., Kage A., Wittenberg T., Mühldorfer S. Computer-assisted diagnosis for precancerous lesions in the esophagus. Methods Inf. Med. 2009, 48(4):324-330.
    • (2009) Methods Inf. Med. , vol.48 , Issue.4 , pp. 324-330
    • Münzenmayer, C.1    Kage, A.2    Wittenberg, T.3    Mühldorfer, S.4
  • 18
    • 0030383588 scopus 로고    scopus 로고
    • Comparing images using color coherence vectors
    • Pass G., Zabih R., Miller J. Comparing images using color coherence vectors. Proc. ACM Multim. 1996, 65-73.
    • (1996) Proc. ACM Multim. , pp. 65-73
    • Pass, G.1    Zabih, R.2    Miller, J.3
  • 19
    • 84897264429 scopus 로고    scopus 로고
    • Automated bleeding detection in capsule endoscopy videos using statistical features and region growing
    • Sainju S., Bui F.M., Wahid K.A. Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J. Med. Syst. 2014, 38(4):25.
    • (2014) J. Med. Syst. , vol.38 , Issue.4 , pp. 25
    • Sainju, S.1    Bui, F.M.2    Wahid, K.A.3
  • 23
    • 81355133944 scopus 로고    scopus 로고
    • SVM classifier for unbalanced data based on combination of ODR and BSMOTE
    • Tao X.M., Tong Z.J., Liu Y., Fu D.D. SVM classifier for unbalanced data based on combination of ODR and BSMOTE. Control. Decis. 2011, 26(10):1535-1541.
    • (2011) Control. Decis. , vol.26 , Issue.10 , pp. 1535-1541
    • Tao, X.M.1    Tong, Z.J.2    Liu, Y.3    Fu, D.D.4
  • 25
    • 0026065565 scopus 로고
    • Eigenfaces for recognition
    • Turk M., Pentland A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3(1):71-86.
    • (1991) J. Cogn. Neurosci. , vol.3 , Issue.1 , pp. 71-86
    • Turk, M.1    Pentland, A.2
  • 27
    • 84942676886 scopus 로고    scopus 로고
    • Bleeding and ulcer detection using wireless capsule endoscopy images
    • Yeh J.Y., Wu T.H., Tsai W.J. Bleeding and ulcer detection using wireless capsule endoscopy images. J. Soft. Eng. Appl. 2014, 07:422-432.
    • (2014) J. Soft. Eng. Appl. , vol.7 , pp. 422-432
    • Yeh, J.Y.1    Wu, T.H.2    Tsai, W.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.