-
1
-
-
84908343087
-
Advances of aqueous rechargeable lithium-ion battery: a review
-
Alias N., Mohamad A.A. Advances of aqueous rechargeable lithium-ion battery: a review. J. Power Sources 2015, 274:237-251.
-
(2015)
J. Power Sources
, vol.274
, pp. 237-251
-
-
Alias, N.1
Mohamad, A.A.2
-
2
-
-
84920650981
-
Lithium ion rechargeable batteries: state of the art and future needs of microscopic theoretical models and simulations
-
Miranda D., Costa C.M., Lanceros-Mendez S. Lithium ion rechargeable batteries: state of the art and future needs of microscopic theoretical models and simulations. J. Electroanal. Chem. 2015, 739:97-110.
-
(2015)
J. Electroanal. Chem.
, vol.739
, pp. 97-110
-
-
Miranda, D.1
Costa, C.M.2
Lanceros-Mendez, S.3
-
3
-
-
84916596410
-
Aqueous rechargeable Li and Na ion batteries
-
Kim H., Hong J., Park K.Y., Kim H., Kim S.W., Kang K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114:11788-11827.
-
(2014)
Chem. Rev.
, vol.114
, pp. 11788-11827
-
-
Kim, H.1
Hong, J.2
Park, K.Y.3
Kim, H.4
Kim, S.W.5
Kang, K.6
-
4
-
-
84867297718
-
Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries
-
Kim S.W., Seo D.H., Ma X., Ceder G., Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2:710-721.
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 710-721
-
-
Kim, S.W.1
Seo, D.H.2
Ma, X.3
Ceder, G.4
Kang, K.5
-
5
-
-
84884158265
-
Conversion reactions for sodium-ion batteries
-
Klein F., Jache B., Bhide A., Adelhelm P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15:15876-15887.
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 15876-15887
-
-
Klein, F.1
Jache, B.2
Bhide, A.3
Adelhelm, P.4
-
6
-
-
84869868027
-
Tin and graphite based nanocomposites: potential anode for sodium ion batteries
-
Datta M.K., Epur R., Saha P., Kadakia K., Park S.K., Kumta P.N. Tin and graphite based nanocomposites: potential anode for sodium ion batteries. J. Power Sources 2013, 225:316-322.
-
(2013)
J. Power Sources
, vol.225
, pp. 316-322
-
-
Datta, M.K.1
Epur, R.2
Saha, P.3
Kadakia, K.4
Park, S.K.5
Kumta, P.N.6
-
7
-
-
84928956092
-
Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries
-
Luo X.F., Yang C.H., Peng Y.Y., Pu N.W., Ger M.D., Hsieh C.T., Chang J.K. Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3:10320-10326.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 10320-10326
-
-
Luo, X.F.1
Yang, C.H.2
Peng, Y.Y.3
Pu, N.W.4
Ger, M.D.5
Hsieh, C.T.6
Chang, J.K.7
-
8
-
-
84862540978
-
Large-scale production of two-dimensional nanosheets
-
Yao Y.G., Lin Z.Y., Li Z., Song X.J., Moon K.S., Wong C.P. Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 2012, 22:13494-13499.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 13494-13499
-
-
Yao, Y.G.1
Lin, Z.Y.2
Li, Z.3
Song, X.J.4
Moon, K.S.5
Wong, C.P.6
-
9
-
-
84879548678
-
Two-dimensional semiconductors: recent progress and future perspectives
-
Song X.F., Hu J.L., Zeng H.B. Two-dimensional semiconductors: recent progress and future perspectives. J. Mater. Chem. C 2013, 1:2952-2969.
-
(2013)
J. Mater. Chem. C
, vol.1
, pp. 2952-2969
-
-
Song, X.F.1
Hu, J.L.2
Zeng, H.B.3
-
10
-
-
84901462187
-
Layered transition metal dichalcogenides for electrochemical energy generation and storage
-
Pumera M., Sofer Z., Ambrosi A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2:8981-8987.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 8981-8987
-
-
Pumera, M.1
Sofer, Z.2
Ambrosi, A.3
-
12
-
-
84873453834
-
2 for sodium ion battery: electrochemical measurements and characterization
-
2 for sodium ion battery: electrochemical measurements and characterization. Electrochim. Acta 2013, 92:427-432.
-
(2013)
Electrochim. Acta
, vol.92
, pp. 427-432
-
-
Park, J.1
Kim, J.S.2
Park, J.W.3
Nam, T.H.4
Kim, K.W.5
Ahn, J.H.6
Wang, G.7
Ahn, H.J.8
-
15
-
-
84907854873
-
Ab initio study of graphene-like monolayer molybdenum disulfide as a promising anode material for rechargeable sodium ion batteries
-
Su J., Pei Y., Yang Z., Wang X. Ab initio study of graphene-like monolayer molybdenum disulfide as a promising anode material for rechargeable sodium ion batteries. RSC Adv. 2014, 4:43183-43188.
-
(2014)
RSC Adv.
, vol.4
, pp. 43183-43188
-
-
Su, J.1
Pei, Y.2
Yang, Z.3
Wang, X.4
-
17
-
-
84919881008
-
2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes
-
2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces 2014, 6:21880-21885.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 21880-21885
-
-
Zhang, S.1
Yu, X.2
Yu, H.3
Chen, Y.4
Gao, P.5
Li, C.6
Zhu, C.7
-
19
-
-
84941137405
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 2014, 53:12794-12798.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 12794-12798
-
-
Hu, Z.1
Wang, L.2
Zhang, K.3
Wang, J.4
Cheng, F.5
Tao, Z.6
Chen, J.7
-
20
-
-
84893860567
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 2014, 53:2152-2156.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 2152-2156
-
-
Zhu, C.1
Mu, X.2
van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
21
-
-
84938249226
-
2 sheets and reduced graphene oxide-an excellent and fast anode for sodium-ion battery
-
2 sheets and reduced graphene oxide-an excellent and fast anode for sodium-ion battery. Sci. Rep. 2015, 5:12571.
-
(2015)
Sci. Rep.
, vol.5
, pp. 12571
-
-
Sahu, T.S.1
Mitra, S.2
-
22
-
-
84906542538
-
2 yolk-shell microspheres with superior Na-ion storage properties
-
2 yolk-shell microspheres with superior Na-ion storage properties. Nanoscale 2014, 6:10511-10515.
-
(2014)
Nanoscale
, vol.6
, pp. 10511-10515
-
-
Ko, Y.N.1
Choi, S.H.2
Park, S.B.3
Kang, Y.C.4
-
23
-
-
84907148529
-
2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries
-
2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale 2014, 6:10975-10981.
-
(2014)
Nanoscale
, vol.6
, pp. 10975-10981
-
-
Ryu, W.H.1
Jung, J.W.2
Park, K.3
Kim, S.J.4
Kim, I.D.5
-
25
-
-
84929497748
-
2 nanosheets into a novel worm-like structure and its application in sodium batteries
-
2 nanosheets into a novel worm-like structure and its application in sodium batteries. J. Mater. Chem. A 2015, 3:9932-9937.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 9932-9937
-
-
Xu, M.W.1
Yi, F.L.2
Niu, Y.B.3
Xie, J.L.4
Hou, J.K.5
Liu, S.G.6
Hu, W.H.7
Li, Y.T.8
Li, C.M.9
-
27
-
-
84896732875
-
2/graphene composite paper for sodium-ion battery electrodes
-
2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8:1759-1770.
-
(2014)
ACS Nano
, vol.8
, pp. 1759-1770
-
-
David, L.1
Bhandavat, R.2
Singh, G.3
-
29
-
-
84906221073
-
2-C composite
-
2-C composite. Chem. Commun. 2014, 50:10730-10733.
-
(2014)
Chem. Commun.
, vol.50
, pp. 10730-10733
-
-
Wang, Y.X.1
Seng, K.H.2
Chou, S.L.3
Wang, J.Z.4
Guo, Z.5
Wexler, D.6
Liu, H.K.7
Dou, S.X.8
-
32
-
-
84926293084
-
2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries
-
2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 2015, 5:9254.
-
(2015)
Sci. Rep.
, vol.5
, pp. 9254
-
-
Xiong, X.Q.1
Luo, W.2
Hu, X.L.3
Chen, C.J.4
Qie, L.5
Hou, D.F.6
Huang, Y.H.7
-
33
-
-
85027922113
-
2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties
-
2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25:1780-1788.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 1780-1788
-
-
Choi, S.H.1
Ko, Y.N.2
Lee, J.K.3
Kang, Y.C.4
-
34
-
-
85027948562
-
2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface
-
2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25:1393-1403.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 1393-1403
-
-
Xie, X.Q.1
Ao, Z.M.2
Su, D.W.3
Zhang, J.Q.4
Wang, G.X.5
-
35
-
-
84909958215
-
Recent advances in graphene-based composite materials
-
He X., Yu Y., Chen Q., Shi X., Lin S. Recent advances in graphene-based composite materials. Mater. Rev. 2013, 27:22-28.
-
(2013)
Mater. Rev.
, vol.27
, pp. 22-28
-
-
He, X.1
Yu, Y.2
Chen, Q.3
Shi, X.4
Lin, S.5
-
36
-
-
79951895444
-
Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications
-
Guo S.J., Dong S.J. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40:2644-2672.
-
(2011)
Chem. Soc. Rev.
, vol.40
, pp. 2644-2672
-
-
Guo, S.J.1
Dong, S.J.2
-
37
-
-
84900455068
-
Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: microstructure and electrochemical lithium storage
-
Ma L., Huang G., Chen W., Wang Z., Ye J., Li H., Chen D., Lee J.Y. Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: microstructure and electrochemical lithium storage. J. Power Sources 2014, 264:262-271.
-
(2014)
J. Power Sources
, vol.264
, pp. 262-271
-
-
Ma, L.1
Huang, G.2
Chen, W.3
Wang, Z.4
Ye, J.5
Li, H.6
Chen, D.7
Lee, J.Y.8
-
38
-
-
49549097145
-
Direct electrochemistry and electrocatalysis with horseradish peroxidase immobilized in polyquaternium-manganese oxide nanosheet nanocomposite films
-
Yang X., Chen X., Zhang X., Yang W., Evans D.G. Direct electrochemistry and electrocatalysis with horseradish peroxidase immobilized in polyquaternium-manganese oxide nanosheet nanocomposite films. Sens. Actuator B: Chem. 2008, 134:182-188.
-
(2008)
Sens. Actuator B: Chem.
, vol.134
, pp. 182-188
-
-
Yang, X.1
Chen, X.2
Zhang, X.3
Yang, W.4
Evans, D.G.5
-
39
-
-
80054987059
-
Characterization of physicochemical properties of perfluorodecanoic acid-polyquaternium cellulose hydrogel
-
Bierbrauer K.L., Alasino R.V., Strumia M.C., Beltramo D.M. Characterization of physicochemical properties of perfluorodecanoic acid-polyquaternium cellulose hydrogel. Colloids Surf. B: Biointerfaces 2012, 89:23-28.
-
(2012)
Colloids Surf. B: Biointerfaces
, vol.89
, pp. 23-28
-
-
Bierbrauer, K.L.1
Alasino, R.V.2
Strumia, M.C.3
Beltramo, D.M.4
-
41
-
-
83455244314
-
2 microspheres composed of few-layered nanosheets and their lithium storage properties
-
2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 2012, 4:95-98.
-
(2012)
Nanoscale
, vol.4
, pp. 95-98
-
-
Ding, S.1
Zhang, D.2
Chen, J.S.3
Lou, X.W.4
-
42
-
-
84921374161
-
Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets
-
Lv R., Robinson J.A., Schaak R.E., Sun D., Sun Y., Mallouk T.E., Terrones M. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48:56-64.
-
(2015)
Acc. Chem. Res.
, vol.48
, pp. 56-64
-
-
Lv, R.1
Robinson, J.A.2
Schaak, R.E.3
Sun, D.4
Sun, Y.5
Mallouk, T.E.6
Terrones, M.7
-
43
-
-
84859603673
-
2: evolution of raman scattering
-
2: evolution of raman scattering. Adv. Funct. Mater. 2012, 22:1385-1390.
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 1385-1390
-
-
Li, H.1
Zhang, Q.2
Yap, C.C.R.3
Tay, B.K.4
Edwin, T.H.T.5
Olivier, A.6
Baillargeat, D.7
-
45
-
-
84907175847
-
2-From bulk to monolayer
-
2-From bulk to monolayer. Solid State Commun. 2014, 197:53-56.
-
(2014)
Solid State Commun.
, vol.197
, pp. 53-56
-
-
Golasa, K.1
Grzeszczyk, M.2
Bozek, R.3
Leszczynski, P.4
Wysmolek, A.5
Potemski, M.6
Babinski, A.7
-
47
-
-
84883494445
-
2 nanosheets with outstanding rate capability for a lithium battery anode
-
2 nanosheets with outstanding rate capability for a lithium battery anode. Inorg. Chem. 2013, 52:9807-9812.
-
(2013)
Inorg. Chem.
, vol.52
, pp. 9807-9812
-
-
Zhang, K.1
Kim, H.-J.2
Shi, X.3
Lee, J.-T.4
Choi, J.-M.5
Song, M.-S.6
Park, J.H.7
-
48
-
-
84884664070
-
Origin of new broad Raman D and G peaks in annealed graphene
-
Hong J., Park M.K., Lee E.J., Lee D., Hwang D.S., Ryu S. Origin of new broad Raman D and G peaks in annealed graphene. Sci. Rep. 2013, 3:2700.
-
(2013)
Sci. Rep.
, vol.3
, pp. 2700
-
-
Hong, J.1
Park, M.K.2
Lee, E.J.3
Lee, D.4
Hwang, D.S.5
Ryu, S.6
-
49
-
-
84876373110
-
Raman spectroscopy as a versatile tool for studying the properties of graphene
-
Ferrari A.C., Basko D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8:235-246.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 235-246
-
-
Ferrari, A.C.1
Basko, D.M.2
-
50
-
-
84880850996
-
Raman study on defective graphene: effect of the excitation energy, type, and amount of defects
-
Eckmann A., Felten A., Verzhbitskiy I., Davey R., Casiraghi C. Raman study on defective graphene: effect of the excitation energy, type, and amount of defects. Phys. Rev. B 2013, 88:035426.
-
(2013)
Phys. Rev. B
, vol.88
, pp. 035426
-
-
Eckmann, A.1
Felten, A.2
Verzhbitskiy, I.3
Davey, R.4
Casiraghi, C.5
-
51
-
-
84879846957
-
2-graphene aerogel and its application as a superior anode material for Li-ion batteries
-
2-graphene aerogel and its application as a superior anode material for Li-ion batteries. RSC Adv. 2013, 3:11489-11492.
-
(2013)
RSC Adv.
, vol.3
, pp. 11489-11492
-
-
Liang, J.F.1
Liu, Y.K.2
Guo, L.3
Li, L.D.4
-
52
-
-
84876518525
-
Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor
-
Luan V.H., Tien H.N., Hoa L.T., Nguyen T.M.H., Oh E.S., Chung J., Kim E.J., Choi W.M., Kong B.S., Hur S.H. Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. J. Mater. Chem. A 2013, 1:208-211.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 208-211
-
-
Luan, V.H.1
Tien, H.N.2
Hoa, L.T.3
Nguyen, T.M.H.4
Oh, E.S.5
Chung, J.6
Kim, E.J.7
Choi, W.M.8
Kong, B.S.9
Hur, S.H.10
|