메뉴 건너뛰기




Volumn 133, Issue , 2016, Pages 95-109

Detection of epileptic seizure in EEG signals using linear least squares preprocessing

Author keywords

Biological signal classification; Data analysis; EEG seizure detection; Feature extraction; Linear least squares problems; Signal approximation

Indexed keywords

BIOMEDICAL SIGNAL PROCESSING; DATA REDUCTION; EXTRACTION; FEATURE EXTRACTION; GENETIC ALGORITHMS; GENETIC PROGRAMMING; LEAST SQUARES APPROXIMATIONS; NEURAL NETWORKS; NEURODEGENERATIVE DISEASES; NEUROPHYSIOLOGY; SIGNAL DETECTION; SURFACE RECONSTRUCTION; WAVELET TRANSFORMS;

EID: 84973115755     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2016.05.002     Document Type: Article
Times cited : (25)

References (51)
  • 1
    • 83455230793 scopus 로고    scopus 로고
    • Quickest detection of drug-resistant seizures: an optimal control approach
    • Santaniello S., Burns S.P., Golby A.J., Singer J.M., Anderson W.S., Sarma S.V. Quickest detection of drug-resistant seizures: an optimal control approach. Epilepsy Behav 2011, 22:S49-S60. http://dx.doi.org/10.1016/j.yebeh.2011.08.041.
    • (2011) Epilepsy Behav , vol.22 , pp. S49-S60
    • Santaniello, S.1    Burns, S.P.2    Golby, A.J.3    Singer, J.M.4    Anderson, W.S.5    Sarma, S.V.6
  • 2
    • 77951019433 scopus 로고    scopus 로고
    • in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE
    • Netoff T., Park Y., Parhi K. Seizure prediction using cost-sensitive support vector machine in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 3322-3325. http://dx.doi.org/10.1109/IEMBS.2009.5333711.
    • Seizure prediction using cost-sensitive support vector machine , pp. 3322-3325
    • Netoff, T.1    Park, Y.2    Parhi, K.3
  • 3
    • 84889578073 scopus 로고    scopus 로고
    • Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG
    • Zhou W., Liu Y., Yuan Q., Li X. Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans. Biomed. Eng 2013, 60(12):3375-3381. http://dx.doi.org/10.1109/TBME.2013.2254486.
    • (2013) IEEE Trans. Biomed. Eng , vol.60 , Issue.12 , pp. 3375-3381
    • Zhou, W.1    Liu, Y.2    Yuan, Q.3    Li, X.4
  • 4
  • 5
    • 35348880967 scopus 로고    scopus 로고
    • Extraction of reproducible seizure patterns based on EEG scalp correlations
    • Dorr V.L., Caparos M., Wendling F., Vignal J.-P., Wolf D. Extraction of reproducible seizure patterns based on EEG scalp correlations. Biomed. Signal Process. Control 2007, 2(3):154-162. http://dx.doi.org/10.1016/j.bspc.2007.07.002.
    • (2007) Biomed. Signal Process. Control , vol.2 , Issue.3 , pp. 154-162
    • Dorr, V.L.1    Caparos, M.2    Wendling, F.3    Vignal, J.-P.4    Wolf, D.5
  • 6
    • 82255179229 scopus 로고    scopus 로고
    • A tunable support vector machine assembly classifier for epileptic seizure detection
    • Tang Y., Durand D. A tunable support vector machine assembly classifier for epileptic seizure detection. Expert Syst. Appl 2012, 39(4):3925-3938. http://dx.doi.org/10.1016/j.eswa.2011.08.088.
    • (2012) Expert Syst. Appl , vol.39 , Issue.4 , pp. 3925-3938
    • Tang, Y.1    Durand, D.2
  • 7
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli H., Zhou Z., Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 2003, 123(1):69-87. http://dx.doi.org/10.1016/S0165-0270(02)00340-0, 10.1016/S0165-0270(02)00340-0.
    • (2003) J. Neurosci. Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 8
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • Khan Y., Gotman J. Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol 2003, 114(5):898-908. http://dx.doi.org/10.1016/S1388-2457(03)00035-X, 10.1016/S1388-2457(03)00035-X.
    • (2003) Clin. Neurophysiol , vol.114 , Issue.5 , pp. 898-908
    • Khan, Y.1    Gotman, J.2
  • 9
    • 84874657690 scopus 로고    scopus 로고
    • Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis
    • Xie S., Krishnan S. Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med. Biol. Eng. Comput 2013, 51(1-2):49-60. http://dx.doi.org/10.1007/s11517-012-0967-8.
    • (2013) Med. Biol. Eng. Comput , vol.51 , Issue.1-2 , pp. 49-60
    • Xie, S.1    Krishnan, S.2
  • 10
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Srinivasan V., Eswaran C., Sriraam N. Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst 2005, 29(6):647-660. http://dx.doi.org/10.1007/s10916-005-6133-1.
    • (2005) J. Med. Syst , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 11
    • 84973144848 scopus 로고    scopus 로고
    • Article: the detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI
    • Cetin G.D., Cetin O., Bozkurt M.R. Article: the detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI. Int. J. Comput. Appl 2015, 114(12):45-50.
    • (2015) Int. J. Comput. Appl , vol.114 , Issue.12 , pp. 45-50
    • Cetin, G.D.1    Cetin, O.2    Bozkurt, M.R.3
  • 12
    • 84954475756 scopus 로고    scopus 로고
    • A novel genetic programming approach for epileptic seizure detection
    • Bhardwaj A., Tiwari A., Krishna R., Varma V. A novel genetic programming approach for epileptic seizure detection. Comput. Methods Programs Biomed 2016, 124:2-18. http://www.sciencedirect.com/science/article/pii/S016926071500262X.
    • (2016) Comput. Methods Programs Biomed , vol.124 , pp. 2-18
    • Bhardwaj, A.1    Tiwari, A.2    Krishna, R.3    Varma, V.4
  • 14
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    • Ghosh-Dastidar S., Adeli H., Dadmehr N. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng 2007, 54(9):1545-1551. http://dx.doi.org/10.1109/TBME.2007.891945.
    • (2007) IEEE Trans. Biomed. Eng , vol.54 , Issue.9 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 15
    • 41249099701 scopus 로고    scopus 로고
    • Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
    • Ocak H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Proc 2008, 88(7):1858-1867. http://dx.doi.org/10.1016/j.sigpro.2008.01.026.
    • (2008) Signal Proc , vol.88 , Issue.7 , pp. 1858-1867
    • Ocak, H.1
  • 16
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • Polat K., Gne S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput 2007, 187(2):1017-1026. http://dx.doi.org/10.1016/j.amc.2006.09.022.
    • (2007) Appl. Math. Comput , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Gne, S.2
  • 17
    • 84892783589 scopus 로고    scopus 로고
    • Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
    • Pachori R.B., Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput. Methods Programs Biomed 2014, 113(2):494-502. http://dx.doi.org/10.1016/j.cmpb.2013.11.014.
    • (2014) Comput. Methods Programs Biomed , vol.113 , Issue.2 , pp. 494-502
    • Pachori, R.B.1    Patidar, S.2
  • 18
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizure and nonseizure EEG signals using empirical mode decomposition
    • Bajaj V., Pachori R. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed 2012, 16(6):1135-1142. http://dx.doi.org/10.1109/TITB.2011.2181403.
    • (2012) IEEE Trans. Inf. Technol. Biomed , vol.16 , Issue.6 , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.2
  • 19
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., Elger C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 2001, 64:061907. http://dx.doi.org/10.1103/PhysRevE.64.061907.
    • (2001) Phys. Rev. E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 20
    • 84874995849 scopus 로고    scopus 로고
    • Spatial-temporal discriminant analysis for ERP-based brain-computer interface
    • Zhang Y., Zhou G., Zhao Q., Jin J., Wang X., Cichocki A. Spatial-temporal discriminant analysis for ERP-based brain-computer interface. IEEE Trans. Neural Syst. Rehab. Eng 2013, 21(2):233-243. http://dx.doi.org/10.1109/TNSRE.2013.2243471.
    • (2013) IEEE Trans. Neural Syst. Rehab. Eng , vol.21 , Issue.2 , pp. 233-243
    • Zhang, Y.1    Zhou, G.2    Zhao, Q.3    Jin, J.4    Wang, X.5    Cichocki, A.6
  • 21
    • 84907278910 scopus 로고    scopus 로고
    • in: M. Nelson, T. Hamilton, M. Jennings, J. Bunder (Eds.), Proceedings of the 11th Biennial Engineering Mathematics and Applications Conference, EMAC of ANZIAM J., (accessed 27.08.14)
    • Zamir Z.R., Sukhorukova N., Amiel H., Ugon A., Philippe C. Optimization-based features extraction for k-complex detection in: M. Nelson, T. Hamilton, M. Jennings, J. Bunder (Eds.), Proceedings of the 11th Biennial Engineering Mathematics and Applications Conference, EMAC-2013, Vol. 55 of ANZIAM J., pp. C384-C398, (accessed 27.08.14). http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/7802.
    • (2013) Optimization-based features extraction for k-complex detection , vol.55 , pp. C384-C398
    • Zamir, Z.R.1    Sukhorukova, N.2    Amiel, H.3    Ugon, A.4    Philippe, C.5
  • 22
    • 84937807688 scopus 로고    scopus 로고
    • Convex optimisation-based methods for k-complex detection
    • Zamir Z.R., Sukhorukova N., Amiel H., Ugon A., Philippe C. Convex optimisation-based methods for k-complex detection. Appl. Math. Comput 2015, 268:947-956. http://dx.doi.org/10.1016/j.amc.2015.07.005.
    • (2015) Appl. Math. Comput , vol.268 , pp. 947-956
    • Zamir, Z.R.1    Sukhorukova, N.2    Amiel, H.3    Ugon, A.4    Philippe, C.5
  • 24
    • 84897999975 scopus 로고    scopus 로고
    • Frequency recognition in SSVEP-based BCI using multiset canonicalcorrelation analysis
    • arXiv
    • Zhang Y., Zhou G., Jin J., Wang X., Cichocki A. Frequency recognition in SSVEP-based BCI using multiset canonicalcorrelation analysis. Int. J. Neural Syst 2014, 24(04):1450013. arXiv. pmid:24694168.
    • (2014) Int. J. Neural Syst , vol.24 , Issue.4 , pp. 1450013
    • Zhang, Y.1    Zhou, G.2    Jin, J.3    Wang, X.4    Cichocki, A.5
  • 25
    • 84959441041 scopus 로고    scopus 로고
    • Linear least squares problems involving fixed knots polynomial splines and their singularity study
    • Zamir Z.R., Sukhorukova N. Linear least squares problems involving fixed knots polynomial splines and their singularity study. Appl. Math. Comput 2016, 282:204-215. http://www.sciencedirect.com/science/article/pii/S009630031630114X.
    • (2016) Appl. Math. Comput , vol.282 , pp. 204-215
    • Zamir, Z.R.1    Sukhorukova, N.2
  • 26
    • 84859317592 scopus 로고    scopus 로고
    • Detecting k-complexes for sleep stage identification using nonsmooth optimization
    • Moloney D., Sukhorukova N., Vamplew P., Ugon J., Li G., Beliakov G., et al. Detecting k-complexes for sleep stage identification using nonsmooth optimization. ANZIAM J. 2011, 52:319-332.
    • (2011) ANZIAM J. , vol.52 , pp. 319-332
    • Moloney, D.1    Sukhorukova, N.2    Vamplew, P.3    Ugon, J.4    Li, G.5    Beliakov, G.6
  • 27
  • 29
    • 0016030726 scopus 로고
    • Spline functions in data analysis
    • Wold S. Spline functions in data analysis. Technometrics 1974, 16(1):1-11. http://www.jstor.org/stable/1267485.
    • (1974) Technometrics , vol.16 , Issue.1 , pp. 1-11
    • Wold, S.1
  • 32
    • 84973129340 scopus 로고
    • Dokl. Akad. Nauk SSSR 39,see also Collected Works, Moscow, Izdatel'stvo Akad, Nauk SSSR, 1949)
    • Chebotarev N.G. On a certain minimax criterion 1943, Dokl. Akad. Nauk SSSR 39, 373-376 (see also Collected Works Vol. 2, Moscow, Izdatel'stvo Akad, Nauk SSSR, 1949).
    • (1943) On a certain minimax criterion , vol.2 , pp. 373-376
    • Chebotarev, N.G.1
  • 33
    • 0003852590 scopus 로고    scopus 로고
    • Numerical methods for least squares problems
    • Society for Industrial and Applied Mathematics
    • Bjõrck A. Numerical methods for least squares problems. Handbook of Numerical Analysis 1996, Society for Industrial and Applied Mathematics.
    • (1996) Handbook of Numerical Analysis
    • Bjõrck, A.1
  • 34
    • 84907276768 scopus 로고    scopus 로고
    • Tech. rep., Computer Science Department, The Pennsylvania State University, University Park, PA, USA
    • Barlow J.L. Numerical aspects of solving linear least squares problems 1999, Tech. rep., Computer Science Department, The Pennsylvania State University, University Park, PA, USA.
    • (1999) Numerical aspects of solving linear least squares problems
    • Barlow, J.L.1
  • 37
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • Tzallas A.T., Tsipouras M.G., Fotiadis D.I. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci 2007, 2007:80510. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246039/.
    • (2007) Comput. Intell. Neurosci , vol.2007 , pp. 80510
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 38
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • Guo L., Rivero D., Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 2010, 193(1):156-163. http://dx.doi.org/10.1016/j.jneumeth.2010.08.030.
    • (2010) J. Neurosci. Methods , vol.193 , Issue.1 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 40
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl 2009, 36(2 Pt 1):2027-2036. http://dx.doi.org/10.1016/j.eswa.2007.12.065.
    • (2009) Expert Syst. Appl , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1
  • 41
    • 77955054723 scopus 로고    scopus 로고
    • Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
    • Guo L., Rivero D., Dorado J., Rabual J.R., Pazos A. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J. Neurosci. Methods 2010, 191(1):101-109. http://dx.doi.org/10.1016/j.jneumeth.2010.05.020.
    • (2010) J. Neurosci. Methods , vol.191 , Issue.1 , pp. 101-109
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Rabual, J.R.4    Pazos, A.5
  • 42
    • 70349410385 scopus 로고    scopus 로고
    • Epileptic seizure detection in EEGs using time frequency analysis
    • Tzallas A., Tsipouras M., Fotiadis D. Epileptic seizure detection in EEGs using time frequency analysis. IEEE Trans. Inf. Technol. Biomed 2009, 13(5):703-710. http://dx.doi.org/10.1109/TITB.2009.2017939.
    • (2009) IEEE Trans. Inf. Technol. Biomed , vol.13 , Issue.5 , pp. 703-710
    • Tzallas, A.1    Tsipouras, M.2    Fotiadis, D.3
  • 43
    • 77954612893 scopus 로고    scopus 로고
    • Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
    • 62:1-62:15
    • Liang S.-F., Wang H.-C., Chang W.-L. Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J. Adv. Signal Proc 2010, 2010. 62:1-62:15. http://dx.doi.org/10.1155/2010/853434.
    • (2010) EURASIP J. Adv. Signal Proc , vol.2010
    • Liang, S.-F.1    Wang, H.-C.2    Chang, W.-L.3
  • 44
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
    • Song Y., Lio P. A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J. Biomed. Sci. Eng 2010, 3(6):556-567. http://www.SciRP.org/journal/jbise/.
    • (2010) J. Biomed. Sci. Eng , vol.3 , Issue.6 , pp. 556-567
    • Song, Y.1    Lio, P.2
  • 45
    • 84874309049 scopus 로고    scopus 로고
    • Detection of epileptic seizure in EEG recordings by spectral method and statistical analysis
    • Ravish D.K., Shenbaga Devi S., Krishnamoorthy S.G., Karthikeyan M.R. Detection of epileptic seizure in EEG recordings by spectral method and statistical analysis. J. Appl. Sci 2013, 13(2):207-219. http://scialert.net/abstract/?doi=jas.2013.207.219.
    • (2013) J. Appl. Sci , vol.13 , Issue.2 , pp. 207-219
    • Ravish, D.K.1    Shenbaga Devi, S.2    Krishnamoorthy, S.G.3    Karthikeyan, M.R.4
  • 46
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • Nigam D., Graupe V.P. A neural-network-based detection of epilepsy. Neurol. Res 2004, 26(1):55-60. http://dx.doi.org/10.1179/016164104773026534.
    • (2004) Neurol. Res , vol.26 , Issue.1 , pp. 55-60
    • Nigam, D.1    Graupe, V.P.2
  • 49
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl 2007, 32(4):1084-1093. http://dx.doi.org/10.1016/j.eswa.2006.02.005.
    • (2007) Expert Syst. Appl , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 51
    • 84973144848 scopus 로고    scopus 로고
    • The detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI
    • Cetin G.D., Cetin O., Bozkurt M.R. The detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI. Int. J. Comput. Appl 2015, 114(12):45-50. http://dx.doi.org/10.5120/20034-2145.
    • (2015) Int. J. Comput. Appl , vol.114 , Issue.12 , pp. 45-50
    • Cetin, G.D.1    Cetin, O.2    Bozkurt, M.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.