-
1
-
-
83455230793
-
Quickest detection of drug-resistant seizures: an optimal control approach
-
Santaniello S., Burns S.P., Golby A.J., Singer J.M., Anderson W.S., Sarma S.V. Quickest detection of drug-resistant seizures: an optimal control approach. Epilepsy Behav 2011, 22:S49-S60. http://dx.doi.org/10.1016/j.yebeh.2011.08.041.
-
(2011)
Epilepsy Behav
, vol.22
, pp. S49-S60
-
-
Santaniello, S.1
Burns, S.P.2
Golby, A.J.3
Singer, J.M.4
Anderson, W.S.5
Sarma, S.V.6
-
2
-
-
77951019433
-
-
in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE
-
Netoff T., Park Y., Parhi K. Seizure prediction using cost-sensitive support vector machine in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 3322-3325. http://dx.doi.org/10.1109/IEMBS.2009.5333711.
-
Seizure prediction using cost-sensitive support vector machine
, pp. 3322-3325
-
-
Netoff, T.1
Park, Y.2
Parhi, K.3
-
3
-
-
84889578073
-
Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG
-
Zhou W., Liu Y., Yuan Q., Li X. Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans. Biomed. Eng 2013, 60(12):3375-3381. http://dx.doi.org/10.1109/TBME.2013.2254486.
-
(2013)
IEEE Trans. Biomed. Eng
, vol.60
, Issue.12
, pp. 3375-3381
-
-
Zhou, W.1
Liu, Y.2
Yuan, Q.3
Li, X.4
-
4
-
-
84973150789
-
-
Epilepsy Australia Ltd. Epilepsy Australia-Information http://www.epilepsyaustralia.net/epilepsy-explained/.
-
Epilepsy Australia-Information
-
-
-
5
-
-
35348880967
-
Extraction of reproducible seizure patterns based on EEG scalp correlations
-
Dorr V.L., Caparos M., Wendling F., Vignal J.-P., Wolf D. Extraction of reproducible seizure patterns based on EEG scalp correlations. Biomed. Signal Process. Control 2007, 2(3):154-162. http://dx.doi.org/10.1016/j.bspc.2007.07.002.
-
(2007)
Biomed. Signal Process. Control
, vol.2
, Issue.3
, pp. 154-162
-
-
Dorr, V.L.1
Caparos, M.2
Wendling, F.3
Vignal, J.-P.4
Wolf, D.5
-
6
-
-
82255179229
-
A tunable support vector machine assembly classifier for epileptic seizure detection
-
Tang Y., Durand D. A tunable support vector machine assembly classifier for epileptic seizure detection. Expert Syst. Appl 2012, 39(4):3925-3938. http://dx.doi.org/10.1016/j.eswa.2011.08.088.
-
(2012)
Expert Syst. Appl
, vol.39
, Issue.4
, pp. 3925-3938
-
-
Tang, Y.1
Durand, D.2
-
7
-
-
0037441741
-
Analysis of EEG records in an epileptic patient using wavelet transform
-
Adeli H., Zhou Z., Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 2003, 123(1):69-87. http://dx.doi.org/10.1016/S0165-0270(02)00340-0, 10.1016/S0165-0270(02)00340-0.
-
(2003)
J. Neurosci. Methods
, vol.123
, Issue.1
, pp. 69-87
-
-
Adeli, H.1
Zhou, Z.2
Dadmehr, N.3
-
8
-
-
0038398958
-
Wavelet based automatic seizure detection in intracerebral electroencephalogram
-
Khan Y., Gotman J. Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol 2003, 114(5):898-908. http://dx.doi.org/10.1016/S1388-2457(03)00035-X, 10.1016/S1388-2457(03)00035-X.
-
(2003)
Clin. Neurophysiol
, vol.114
, Issue.5
, pp. 898-908
-
-
Khan, Y.1
Gotman, J.2
-
9
-
-
84874657690
-
Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis
-
Xie S., Krishnan S. Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med. Biol. Eng. Comput 2013, 51(1-2):49-60. http://dx.doi.org/10.1007/s11517-012-0967-8.
-
(2013)
Med. Biol. Eng. Comput
, vol.51
, Issue.1-2
, pp. 49-60
-
-
Xie, S.1
Krishnan, S.2
-
10
-
-
24044474732
-
Artificial neural network based epileptic detection using time-domain and frequency-domain features
-
Srinivasan V., Eswaran C., Sriraam N. Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst 2005, 29(6):647-660. http://dx.doi.org/10.1007/s10916-005-6133-1.
-
(2005)
J. Med. Syst
, vol.29
, Issue.6
, pp. 647-660
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, N.3
-
11
-
-
84973144848
-
Article: the detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI
-
Cetin G.D., Cetin O., Bozkurt M.R. Article: the detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI. Int. J. Comput. Appl 2015, 114(12):45-50.
-
(2015)
Int. J. Comput. Appl
, vol.114
, Issue.12
, pp. 45-50
-
-
Cetin, G.D.1
Cetin, O.2
Bozkurt, M.R.3
-
12
-
-
84954475756
-
A novel genetic programming approach for epileptic seizure detection
-
Bhardwaj A., Tiwari A., Krishna R., Varma V. A novel genetic programming approach for epileptic seizure detection. Comput. Methods Programs Biomed 2016, 124:2-18. http://www.sciencedirect.com/science/article/pii/S016926071500262X.
-
(2016)
Comput. Methods Programs Biomed
, vol.124
, pp. 2-18
-
-
Bhardwaj, A.1
Tiwari, A.2
Krishna, R.3
Varma, V.4
-
13
-
-
79955700338
-
-
in: Systems in Medicine and Biology (ICSMB), 2010 International Conference on
-
Panda R., Khobragade P., Jambhule P., Jengthe S., Pal P., Gandhi T. Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction in: Systems in Medicine and Biology (ICSMB), 2010 International Conference on, pp. 405-408. http://dx.doi.org/10.1109/ICSMB.2010.5735413.
-
Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction
, pp. 405-408
-
-
Panda, R.1
Khobragade, P.2
Jambhule, P.3
Jengthe, S.4
Pal, P.5
Gandhi, T.6
-
14
-
-
34547573516
-
Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
-
Ghosh-Dastidar S., Adeli H., Dadmehr N. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng 2007, 54(9):1545-1551. http://dx.doi.org/10.1109/TBME.2007.891945.
-
(2007)
IEEE Trans. Biomed. Eng
, vol.54
, Issue.9
, pp. 1545-1551
-
-
Ghosh-Dastidar, S.1
Adeli, H.2
Dadmehr, N.3
-
15
-
-
41249099701
-
Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
-
Ocak H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Proc 2008, 88(7):1858-1867. http://dx.doi.org/10.1016/j.sigpro.2008.01.026.
-
(2008)
Signal Proc
, vol.88
, Issue.7
, pp. 1858-1867
-
-
Ocak, H.1
-
16
-
-
34247217946
-
Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
-
Polat K., Gne S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput 2007, 187(2):1017-1026. http://dx.doi.org/10.1016/j.amc.2006.09.022.
-
(2007)
Appl. Math. Comput
, vol.187
, Issue.2
, pp. 1017-1026
-
-
Polat, K.1
Gne, S.2
-
17
-
-
84892783589
-
Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
-
Pachori R.B., Patidar S. Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput. Methods Programs Biomed 2014, 113(2):494-502. http://dx.doi.org/10.1016/j.cmpb.2013.11.014.
-
(2014)
Comput. Methods Programs Biomed
, vol.113
, Issue.2
, pp. 494-502
-
-
Pachori, R.B.1
Patidar, S.2
-
18
-
-
84865980798
-
Classification of seizure and nonseizure EEG signals using empirical mode decomposition
-
Bajaj V., Pachori R. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed 2012, 16(6):1135-1142. http://dx.doi.org/10.1109/TITB.2011.2181403.
-
(2012)
IEEE Trans. Inf. Technol. Biomed
, vol.16
, Issue.6
, pp. 1135-1142
-
-
Bajaj, V.1
Pachori, R.2
-
19
-
-
0035682573
-
Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
-
Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., Elger C.E. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 2001, 64:061907. http://dx.doi.org/10.1103/PhysRevE.64.061907.
-
(2001)
Phys. Rev. E
, vol.64
, pp. 061907
-
-
Andrzejak, R.G.1
Lehnertz, K.2
Mormann, F.3
Rieke, C.4
David, P.5
Elger, C.E.6
-
20
-
-
84874995849
-
Spatial-temporal discriminant analysis for ERP-based brain-computer interface
-
Zhang Y., Zhou G., Zhao Q., Jin J., Wang X., Cichocki A. Spatial-temporal discriminant analysis for ERP-based brain-computer interface. IEEE Trans. Neural Syst. Rehab. Eng 2013, 21(2):233-243. http://dx.doi.org/10.1109/TNSRE.2013.2243471.
-
(2013)
IEEE Trans. Neural Syst. Rehab. Eng
, vol.21
, Issue.2
, pp. 233-243
-
-
Zhang, Y.1
Zhou, G.2
Zhao, Q.3
Jin, J.4
Wang, X.5
Cichocki, A.6
-
21
-
-
84907278910
-
-
in: M. Nelson, T. Hamilton, M. Jennings, J. Bunder (Eds.), Proceedings of the 11th Biennial Engineering Mathematics and Applications Conference, EMAC of ANZIAM J., (accessed 27.08.14)
-
Zamir Z.R., Sukhorukova N., Amiel H., Ugon A., Philippe C. Optimization-based features extraction for k-complex detection in: M. Nelson, T. Hamilton, M. Jennings, J. Bunder (Eds.), Proceedings of the 11th Biennial Engineering Mathematics and Applications Conference, EMAC-2013, Vol. 55 of ANZIAM J., pp. C384-C398, (accessed 27.08.14). http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/7802.
-
(2013)
Optimization-based features extraction for k-complex detection
, vol.55
, pp. C384-C398
-
-
Zamir, Z.R.1
Sukhorukova, N.2
Amiel, H.3
Ugon, A.4
Philippe, C.5
-
22
-
-
84937807688
-
Convex optimisation-based methods for k-complex detection
-
Zamir Z.R., Sukhorukova N., Amiel H., Ugon A., Philippe C. Convex optimisation-based methods for k-complex detection. Appl. Math. Comput 2015, 268:947-956. http://dx.doi.org/10.1016/j.amc.2015.07.005.
-
(2015)
Appl. Math. Comput
, vol.268
, pp. 947-956
-
-
Zamir, Z.R.1
Sukhorukova, N.2
Amiel, H.3
Ugon, A.4
Philippe, C.5
-
23
-
-
76749092270
-
The WEKA data mining software: an update
-
Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H. The WEKA data mining software: an update. SIGKDD Explor. Newsl 2009, 11(1):10-18. http://doi.acm.org/10.1145/1656274.1656278.
-
(2009)
SIGKDD Explor. Newsl
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
24
-
-
84897999975
-
Frequency recognition in SSVEP-based BCI using multiset canonicalcorrelation analysis
-
arXiv
-
Zhang Y., Zhou G., Jin J., Wang X., Cichocki A. Frequency recognition in SSVEP-based BCI using multiset canonicalcorrelation analysis. Int. J. Neural Syst 2014, 24(04):1450013. arXiv. pmid:24694168.
-
(2014)
Int. J. Neural Syst
, vol.24
, Issue.4
, pp. 1450013
-
-
Zhang, Y.1
Zhou, G.2
Jin, J.3
Wang, X.4
Cichocki, A.5
-
25
-
-
84959441041
-
Linear least squares problems involving fixed knots polynomial splines and their singularity study
-
Zamir Z.R., Sukhorukova N. Linear least squares problems involving fixed knots polynomial splines and their singularity study. Appl. Math. Comput 2016, 282:204-215. http://www.sciencedirect.com/science/article/pii/S009630031630114X.
-
(2016)
Appl. Math. Comput
, vol.282
, pp. 204-215
-
-
Zamir, Z.R.1
Sukhorukova, N.2
-
26
-
-
84859317592
-
Detecting k-complexes for sleep stage identification using nonsmooth optimization
-
Moloney D., Sukhorukova N., Vamplew P., Ugon J., Li G., Beliakov G., et al. Detecting k-complexes for sleep stage identification using nonsmooth optimization. ANZIAM J. 2011, 52:319-332.
-
(2011)
ANZIAM J.
, vol.52
, pp. 319-332
-
-
Moloney, D.1
Sukhorukova, N.2
Vamplew, P.3
Ugon, J.4
Li, G.5
Beliakov, G.6
-
27
-
-
84910163262
-
-
Rep. TP 307, Atomic Energy Res. Est., Harwell, England
-
Powell M.J.D. Curve fitting by cubic splines 1967, Rep. TP 307, Atomic Energy Res. Est., Harwell, England.
-
(1967)
Curve fitting by cubic splines
-
-
Powell, M.J.D.1
-
29
-
-
0016030726
-
Spline functions in data analysis
-
Wold S. Spline functions in data analysis. Technometrics 1974, 16(1):1-11. http://www.jstor.org/stable/1267485.
-
(1974)
Technometrics
, vol.16
, Issue.1
, pp. 1-11
-
-
Wold, S.1
-
30
-
-
0004155631
-
-
Springer-Verlag, Berlin Heidelberg
-
Nürnberger G. Approximation by Spline Functions 1989, Springer-Verlag, Berlin Heidelberg. http://books.google.com.au/books?id=-0F4QgAACAAJ.
-
(1989)
Approximation by Spline Functions
-
-
Nürnberger, G.1
-
32
-
-
84973129340
-
-
Dokl. Akad. Nauk SSSR 39,see also Collected Works, Moscow, Izdatel'stvo Akad, Nauk SSSR, 1949)
-
Chebotarev N.G. On a certain minimax criterion 1943, Dokl. Akad. Nauk SSSR 39, 373-376 (see also Collected Works Vol. 2, Moscow, Izdatel'stvo Akad, Nauk SSSR, 1949).
-
(1943)
On a certain minimax criterion
, vol.2
, pp. 373-376
-
-
Chebotarev, N.G.1
-
33
-
-
0003852590
-
Numerical methods for least squares problems
-
Society for Industrial and Applied Mathematics
-
Bjõrck A. Numerical methods for least squares problems. Handbook of Numerical Analysis 1996, Society for Industrial and Applied Mathematics.
-
(1996)
Handbook of Numerical Analysis
-
-
Bjõrck, A.1
-
34
-
-
84907276768
-
-
Tech. rep., Computer Science Department, The Pennsylvania State University, University Park, PA, USA
-
Barlow J.L. Numerical aspects of solving linear least squares problems 1999, Tech. rep., Computer Science Department, The Pennsylvania State University, University Park, PA, USA.
-
(1999)
Numerical aspects of solving linear least squares problems
-
-
Barlow, J.L.1
-
35
-
-
0004055894
-
-
Cambridge University Press, New York, NY, USA
-
Boyd S., Vandenberghe L. Convex Optimization 2010, Cambridge University Press, New York, NY, USA.
-
(2010)
Convex Optimization
-
-
Boyd, S.1
Vandenberghe, L.2
-
37
-
-
38749083808
-
Automatic seizure detection based on time-frequency analysis and artificial neural networks
-
Tzallas A.T., Tsipouras M.G., Fotiadis D.I. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci 2007, 2007:80510. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246039/.
-
(2007)
Comput. Intell. Neurosci
, vol.2007
, pp. 80510
-
-
Tzallas, A.T.1
Tsipouras, M.G.2
Fotiadis, D.I.3
-
38
-
-
77957685691
-
Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
-
Guo L., Rivero D., Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 2010, 193(1):156-163. http://dx.doi.org/10.1016/j.jneumeth.2010.08.030.
-
(2010)
J. Neurosci. Methods
, vol.193
, Issue.1
, pp. 156-163
-
-
Guo, L.1
Rivero, D.2
Pazos, A.3
-
40
-
-
56349101801
-
Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
-
Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl 2009, 36(2 Pt 1):2027-2036. http://dx.doi.org/10.1016/j.eswa.2007.12.065.
-
(2009)
Expert Syst. Appl
, vol.36
, Issue.2
, pp. 2027-2036
-
-
Ocak, H.1
-
41
-
-
77955054723
-
Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
-
Guo L., Rivero D., Dorado J., Rabual J.R., Pazos A. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J. Neurosci. Methods 2010, 191(1):101-109. http://dx.doi.org/10.1016/j.jneumeth.2010.05.020.
-
(2010)
J. Neurosci. Methods
, vol.191
, Issue.1
, pp. 101-109
-
-
Guo, L.1
Rivero, D.2
Dorado, J.3
Rabual, J.R.4
Pazos, A.5
-
42
-
-
70349410385
-
Epileptic seizure detection in EEGs using time frequency analysis
-
Tzallas A., Tsipouras M., Fotiadis D. Epileptic seizure detection in EEGs using time frequency analysis. IEEE Trans. Inf. Technol. Biomed 2009, 13(5):703-710. http://dx.doi.org/10.1109/TITB.2009.2017939.
-
(2009)
IEEE Trans. Inf. Technol. Biomed
, vol.13
, Issue.5
, pp. 703-710
-
-
Tzallas, A.1
Tsipouras, M.2
Fotiadis, D.3
-
43
-
-
77954612893
-
Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
-
62:1-62:15
-
Liang S.-F., Wang H.-C., Chang W.-L. Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J. Adv. Signal Proc 2010, 2010. 62:1-62:15. http://dx.doi.org/10.1155/2010/853434.
-
(2010)
EURASIP J. Adv. Signal Proc
, vol.2010
-
-
Liang, S.-F.1
Wang, H.-C.2
Chang, W.-L.3
-
44
-
-
78651302006
-
A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
-
Song Y., Lio P. A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J. Biomed. Sci. Eng 2010, 3(6):556-567. http://www.SciRP.org/journal/jbise/.
-
(2010)
J. Biomed. Sci. Eng
, vol.3
, Issue.6
, pp. 556-567
-
-
Song, Y.1
Lio, P.2
-
45
-
-
84874309049
-
Detection of epileptic seizure in EEG recordings by spectral method and statistical analysis
-
Ravish D.K., Shenbaga Devi S., Krishnamoorthy S.G., Karthikeyan M.R. Detection of epileptic seizure in EEG recordings by spectral method and statistical analysis. J. Appl. Sci 2013, 13(2):207-219. http://scialert.net/abstract/?doi=jas.2013.207.219.
-
(2013)
J. Appl. Sci
, vol.13
, Issue.2
, pp. 207-219
-
-
Ravish, D.K.1
Shenbaga Devi, S.2
Krishnamoorthy, S.G.3
Karthikeyan, M.R.4
-
46
-
-
0842310823
-
A neural-network-based detection of epilepsy
-
Nigam D., Graupe V.P. A neural-network-based detection of epilepsy. Neurol. Res 2004, 26(1):55-60. http://dx.doi.org/10.1179/016164104773026534.
-
(2004)
Neurol. Res
, vol.26
, Issue.1
, pp. 55-60
-
-
Nigam, D.1
Graupe, V.P.2
-
47
-
-
27744537035
-
Entropies for detection of epilepsy in EEG
-
Kannathal N., Choo M.L., Acharya U.R., Sadasivan P. Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed 2005, 80(3):187-194. http://dx.doi.org/10.1016/j.cmpb.2005.06.012.
-
(2005)
Comput. Methods Programs Biomed
, vol.80
, Issue.3
, pp. 187-194
-
-
Kannathal, N.1
Choo, M.L.2
Acharya, U.R.3
Sadasivan, P.4
-
48
-
-
25144477526
-
Characterization of EEG a comparative study
-
Kannathal N., Acharya U.R., Lim C.M., Sadasivan P.K. Characterization of EEG a comparative study. Comput. Methods Programs Biomed 2005, 80(1):17-23.
-
(2005)
Comput. Methods Programs Biomed
, vol.80
, Issue.1
, pp. 17-23
-
-
Kannathal, N.1
Acharya, U.R.2
Lim, C.M.3
Sadasivan, P.K.4
-
49
-
-
33751396389
-
EEG signal classification using wavelet feature extraction and a mixture of expert model
-
Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl 2007, 32(4):1084-1093. http://dx.doi.org/10.1016/j.eswa.2006.02.005.
-
(2007)
Expert Syst. Appl
, vol.32
, Issue.4
, pp. 1084-1093
-
-
Subasi, A.1
-
50
-
-
67650751415
-
-
in: Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC '09, ACM, New York, NY, USA
-
Guo L., Rivero D., Seoane J.A., Pazos A. Classification of EEG signals using relative wavelet energy and artificial neural networks in: Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC '09, ACM, New York, NY, USA, pp. 177-184. http://doi.acm.org/10.1145/1543834.1543860.
-
Classification of EEG signals using relative wavelet energy and artificial neural networks
, pp. 177-184
-
-
Guo, L.1
Rivero, D.2
Seoane, J.A.3
Pazos, A.4
-
51
-
-
84973144848
-
The detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI
-
Cetin G.D., Cetin O., Bozkurt M.R. The detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI. Int. J. Comput. Appl 2015, 114(12):45-50. http://dx.doi.org/10.5120/20034-2145.
-
(2015)
Int. J. Comput. Appl
, vol.114
, Issue.12
, pp. 45-50
-
-
Cetin, G.D.1
Cetin, O.2
Bozkurt, M.R.3
|