-
1
-
-
0008117113
-
Distribution of most significant digit in certain functions whose arguments are random variables
-
ADHIKARI, A. and SARKAR, B. (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya Ser. B 30 47-58.
-
(1968)
Sankhya Ser. B
, vol.30
, pp. 47-58
-
-
Adhikari, A.1
Sarkar, B.2
-
2
-
-
0021977936
-
On roundoff error distributions in floating point and logarithmic arithmetic
-
BARLOW, J. and BAREISS, E. (1985). On roundoff error distributions in floating point and logarithmic arithmetic. Computing 34 325-347.
-
(1985)
Computing
, vol.34
, pp. 325-347
-
-
Barlow, J.1
Bareiss, E.2
-
3
-
-
0020139872
-
Patterns in listings of failure-rate and MTTF values and listings of other data
-
BECKER, P. (1982). Patterns in listings of failure-rate and MTTF values and listings of other data. IEEE Transactions on Reliability R-31 132-134.
-
(1982)
IEEE Transactions on Reliability
, vol.R-31
, pp. 132-134
-
-
Becker, P.1
-
5
-
-
1842707242
-
He’s got their number: Scholar uses math to foil financial fraud
-
July 10
-
BERTON, L. (1995). He’s got their number: scholar uses math to foil financial fraud. Wall Street Journal, July 10.
-
(1995)
Wall Street Journal
-
-
Berton, L.1
-
6
-
-
0038695506
-
An illustration of Benford’s first digit law using alpha decay half lives
-
BUCK, B., MERCHANT, A. and PEREZ, S. (1993). An illustration of Benford’s first digit law using alpha decay half lives. European J. Phys. 14 59-63.
-
(1993)
European J. Phys
, vol.14
, pp. 59-63
-
-
Buck, B.1
Merchant, A.2
Perez, S.3
-
7
-
-
34247875563
-
Benford’s law and physical constants: The distribution of initial digits
-
BURKE, J. and KINCANON, E. (1991). Benford’s law and physical constants: the distribution of initial digits. Amer. J. Phys. 59 952.
-
(1991)
Amer. J. Phys
, vol.59
, pp. 952
-
-
Burke, J.1
Kincanon, E.2
-
8
-
-
33847293440
-
An explanation of the first digit phenomenon
-
COHEN, D. (1976). An explanation of the first digit phenomenon. J. Combin. Theory Ser. A 20 367-370.
-
(1976)
J. Combin. Theory Ser. A
, vol.20
, pp. 367-370
-
-
Cohen, D.1
-
9
-
-
48549113518
-
Prime numbers and the first digit phenomenon
-
COHEN, D. and KATZ, T. (1984). Prime numbers and the first digit phenomenon. J. Number Theory 18 261-268.
-
(1984)
J. Number Theory
, vol.18
, pp. 261-268
-
-
Cohen, D.1
Katz, T.2
-
11
-
-
0002417821
-
The distribution of leading digits and uniform distribution mod 1
-
DIACONIS, P. (1977). The distribution of leading digits and uniform distribution mod 1. Ann. Probab. 5 72-81.
-
(1977)
Ann. Probab
, vol.5
, pp. 72-81
-
-
Diaconis, P.1
-
14
-
-
0001590086
-
Overflow, underflow, and severe loss of significance in floating-point addition and subtraction
-
FELDSTEIN, A. and TURNER, P. (1986). Overflow, underflow, and severe loss of significance in floating-point addition and subtraction. IMA J. Numer. Anal. 6 241-251.
-
(1986)
IMA J. Numer. Anal
, vol.6
, pp. 241-251
-
-
Feldstein, A.1
Turner, P.2
-
15
-
-
0000030933
-
On the probability that a random number has initial digit A
-
FLEHINGER, B. (1966). On the probability that a random number has initial digit A. Amer. Math. Monthly 73 1056-1061.
-
(1966)
Amer. Math. Monthly
, vol.73
, pp. 1056-1061
-
-
Flehinger, B.1
-
16
-
-
0014855186
-
On the distribution of numbers
-
HAMMING, R. (1970). On the distribution of numbers. Bell System Technical Journal 49 1609-1625.
-
(1970)
Bell System Technical Journal
, vol.49
, pp. 1609-1625
-
-
Hamming, R.1
-
17
-
-
84966250122
-
Base-invariance implies Benford’s law
-
HILL, T. (1995a). Base-invariance implies Benford’s law. Proc. Amer. Math. Soc. 123 887-895.
-
(1995)
Proc. Amer. Math. Soc
, vol.123
, pp. 887-895
-
-
Hill, T.1
-
18
-
-
21844487115
-
The significant-digit phenomenon
-
HILL, T. (1995b). The significant-digit phenomenon. Amer. Math. Monthly 102 322-327.
-
(1995)
Amer. Math. Monthly
, vol.102
, pp. 322-327
-
-
Hill, T.1
-
19
-
-
44049110407
-
The logarithmic distribution of leading digits and finitely additive measures
-
JECH, T. (1992). The logarithmic distribution of leading digits and finitely additive measures. Discrete Math. 108 53-57.
-
(1992)
Discrete Math
, vol.108
, pp. 53-57
-
-
Jech, T.1
-
22
-
-
84972540812
-
On the peculiar distribution of the U.S. stock indices digits
-
To appear
-
LEY, E. (1995). On the peculiar distribution of the U.S. stock indices digits. Amer. Statist. To appear.
-
(1995)
Amer. Statist
-
-
Ley, E.1
-
23
-
-
84969882200
-
-
4th ed. Springer, New York
-
LOEVE, M. (1977). Probability Theory 1, 4th ed. Springer, New York.
-
(1977)
Probability Theory
, pp. 1
-
-
Loeve, M.1
-
24
-
-
0003038640
-
Note on the frequency of use of the different digits in natural numbers
-
NEWCOMB, S. (1881). Note on the frequency of use of the different digits in natural numbers. Amer. J. Math. 4 39-40.
-
(1881)
Amer. J. Math
, vol.4
, pp. 39-40
-
-
Newcomb, S.1
-
25
-
-
84972501012
-
-
Private communication
-
NIGRINI, M. (1995). Private communication.
-
(1995)
-
-
Nigrini, M.1
-
28
-
-
0001025497
-
The peculiar distribution of first digits
-
December
-
RAIMI, R. (1969). The peculiar distribution of first digits. Scientific American December 109-119.
-
(1969)
Scientific American
, pp. 109-119
-
-
Raimi, R.1
-
29
-
-
0037611243
-
The first digit problem
-
RAIMI, R. (1976). The first digit problem. Amer. Math. Monthly 102 322-327.
-
(1976)
Amer. Math. Monthly
, vol.102
, pp. 322-327
-
-
Raimi, R.1
-
31
-
-
0010075497
-
On mantissa distributions in computing and Benford’s law
-
SCHATTE, P. (1988). On mantissa distributions in computing and Benford’s law. J. Inform. Process. Cybernet. 24 443-455.
-
(1988)
J. Inform. Process. Cybernet
, vol.24
, pp. 443-455
-
-
Schatte, P.1
-
32
-
-
0038019128
-
Benford’s law
-
VARIAN, H. (1972). Benford’s law. Amer. Statist. 23 65-66.
-
(1972)
Amer. Statist
, vol.23
, pp. 65-66
-
-
Varian, H.1
|