메뉴 건너뛰기




Volumn 7, Issue 4, 1992, Pages 457-472

Inference from iterative simulation using multiple sequences

Author keywords

Bayesian inference; Convergence of stochastic processes; ECM; EM; Gibbs sampler; Importance sampling; Metropolis algorithm; Multiple imputation; Random effects model; SIR

Indexed keywords


EID: 84972492387     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/ss/1177011136     Document Type: Article
Times cited : (11847)

References (38)
  • 1
    • 84934734370 scopus 로고
    • Analysis of a finite mixture model with variance components
    • ASA, Alexandria, Va
    • BELIN, T. R. and RUBIN, D. B. (1990). Analysis of a finite mixture model with variance components. Proceedings of the Social Statistics Section 211-215. ASA, Alexandria, Va.
    • (1990) Proceedings of the Social Statistics Section , pp. 211-215
    • Belin, T.R.1    Rubin, D.B.2
  • 3
    • 0000103562 scopus 로고
    • Spatial statistic and Bayesian computation
    • To appear
    • BESAG, J. and GREEN, P. J. (1993). Spatial statistic and Bayesian computation. J. Roy. Statist. Soc. Ser. B 55. To appear.
    • (1993) J. Roy. Statist. Soc. Ser. B , pp. 55
    • Besag, J.1    Green, P.J.2
  • 5
    • 84972496251 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 36149016710 scopus 로고
    • Calculation of order parameters in a binary alloy by the Monte Carlo method
    • FOSDICK, L. D. (1959). Calculation of order parameters in a binary alloy by the Monte Carlo method. Phys. Rev. 116 565-573.
    • (1959) Phys. Rev , vol.116 , pp. 565-573
    • Fosdick, L.D.1
  • 8
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409.
    • (1990) J. Amer. Statist. Assoc , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 9
    • 84865262077 scopus 로고
    • Illustration of Bayesian inference in normal data models using Gibbs sampling
    • GELFAND, A. E., HILLS, S. E., RACINE-POON, A. and SMITH, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Amer. Statist. Assoc. 85 398-409.
    • (1990) J. Amer. Statist. Assoc , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Hills, S.E.2    Racine-Poon, A.3    Smith, A.F.M.4
  • 11
    • 0001032162 scopus 로고
    • A single series from the Gibbs sampler provides a false sense of security
    • (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford Univ. Press
    • GELMAN, A. and RUBIN, D. B. (1992). A single series from the Gibbs sampler provides a false sense of security. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 625-632. Oxford Univ. Press.
    • (1992) Bayesian Statistics 4 , pp. 625-632
    • Gelman, A.1    Rubin, D.B.2
  • 13
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments
    • (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford Univ. Press
    • GEWEKE, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 169-193. Oxford Univ. Press.
    • (1992) Bayesian Statistics 4 , pp. 169-193
    • Geweke, J.1
  • 15
    • 0001135568 scopus 로고
    • Metropolis methods, Gaussian proposals, and antithetic variables
    • Springer, New York
    • GREEN, P. J. and HAN, X. (1991). Metropolis methods, Gaussian proposals, and antithetic variables. Lecture Notes in Statist. 74 142-164. Springer, New York.
    • (1991) Lecture Notes in Statist , vol.74 , pp. 142-164
    • Green, P.J.1    Han, X.2
  • 16
    • 77956890234 scopus 로고
    • Monte-Carlo sampling methods using Markov chains and their applications
    • HASTINGS, W. K. (1970). Monte-Carlo sampling methods using Markov chains and their applications. Biometrika 57 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 17
    • 0001422227 scopus 로고
    • Parameterization issues in Bayesian inference
    • (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford Univ. Press
    • HILLS, S. E. and SMITH, A. F. M. (1992). Parameterization issues in Bayesian inference. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 627-633. Oxford Univ. Press.
    • (1992) Bayesian Statistics 4 , pp. 627-633
    • Hills, S.E.1    Smith, A.F.M.2
  • 19
    • 84972540438 scopus 로고
    • Qualifying paper, Dept. Statistics, Harvard Univ
    • LIU, C. (1991). Qualifying paper, Dept. Statistics, Harvard Univ.
    • (1991)
    • Liu, C.1
  • 21
    • 84864615423 scopus 로고
    • Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm
    • MENG, X. L. and RUBIN, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. J. Amer. Statist. Assoc. 86 899-909.
    • (1991) J. Amer. Statist. Assoc , vol.86 , pp. 899-909
    • Meng, X.L.1    Rubin, D.B.2
  • 22
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • To appear
    • MENG, X. L. and RUBIN, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, To appear.
    • (1993) Biometrika
    • Meng, X.L.1    Rubin, D.B.2
  • 25
    • 0010856122 scopus 로고
    • Apprxomating posterior distributions and posterior moments
    • (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.), Oxford Univ. Press
    • MORRIS, C. N. (1988). Apprxomating posterior distributions and posterior moments. In Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 327-344. Oxford Univ. Press.
    • (1988) Bayesian Statistics 3 , pp. 327-344
    • Morris, C.N.1
  • 26
    • 0009093765 scopus 로고
    • Bayesian interpretation of standard inference statements
    • PRATT, J. W. (1965). Bayesian interpretation of standard inference statements. J. Roy. Statist. Soc. Ser. B 27 169-203.
    • (1965) J. Roy. Statist. Soc. Ser. B , vol.27 , pp. 169-203
    • Pratt, J.W.1
  • 27
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler?
    • (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford Univ. Press
    • RAFTERY, A. E. and LEWIS, S. (1992). How many iterations in the Gibbs sampler? In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 763-773. Oxford Univ. Press.
    • (1992) Bayesian Statistics 4 , pp. 763-773
    • Raftery, A.E.1    Lewis, S.2
  • 29
    • 0000439370 scopus 로고
    • Bayesianly justifiable and relevant frequency calculations for the applied statistician
    • RUBIN, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist. 12 1151-1172.
    • (1984) Ann. Statist , vol.12 , pp. 1151-1172
    • Rubin, D.B.1
  • 31
    • 84950788916 scopus 로고
    • A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. Comment on “The calculation of posterior distributions by data augmentation,” by M. A. Tanner and W. H. Wong
    • RUBIN, D. B. (1987b). A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. Comment on “The calculation of posterior distributions by data augmentation,” by M. A. Tanner and W. H. Wong. J. Amer. Statist. Assoc. 82 543-546.
    • (1987) J. Amer. Statist. Assoc , vol.82 , pp. 543-546
    • Rubin, D.B.1
  • 32
    • 0000458272 scopus 로고
    • Using the SIR algorithm to simulate posterior distributions
    • (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.), Oxford Univ. Press
    • RUBIN, D. B. (1988). Using the SIR algorithm to simulate posterior distributions. In Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 395-402. Oxford Univ. Press.
    • (1988) Bayesian Statistics 3 , pp. 395-402
    • Rubin, D.B.1
  • 33
    • 84872636119 scopus 로고
    • An approximate distribution of estimates of variance components
    • SATTERTHWAITE, F. E. (1946). An approximate distribution of estimates of variance components Biometrics Bulletin 2 110-114.
    • (1946) Biometrics Bulletin , vol.2 , pp. 110-114
    • Satterthwaite, F.E.1
  • 34
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • To appear
    • SMITH, A. F. M. and ROBERTS, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. Roy. Statist. Soc. Ser. B 55. To appear.
    • (1993) J. Roy. Statist. Soc. Ser. B , pp. 55
    • Smith, A.F.M.1    Roberts, G.O.2
  • 35
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • TANNER, M. A. and WONG, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 528-550.
    • (1987) J. Amer. Statist. Assoc , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 36
    • 0009280781 scopus 로고
    • Exploring posterior distributions using Markov chains
    • (E. M. Keramidas, ed.), Interface Foundation, Fairfax Station, Va
    • TIERNEY, L. (1991). Exploring posterior distributions using Markov chains. In Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface (E. M. Keramidas, ed.) 563-570. Interface Foundation, Fairfax Station, Va.
    • (1991) Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface , pp. 563-570
    • Tierney, L.1
  • 37
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • TIERNEY, L. and KADANE, J. B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82-86.
    • (1986) J. Amer. Statist. Assoc , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 38
    • 84910906566 scopus 로고
    • Generalized linear models with random effects: A Gibbs sampling approach
    • ZEGER, S. L. and KARIM, M. R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. J. Amer. Statist. Assoc. 86 79-86.
    • (1991) J. Amer. Statist. Assoc , vol.86 , pp. 79-86
    • Zeger, S.L.1    Karim, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.