-
1
-
-
0000494467
-
Handwritten digit recognition with a back-propagation network
-
Y. Le Cun et al., "Handwritten digit recognition with a back-propagation network," in Proc. NIPS, 1990, pp. 396-404.
-
(1990)
Proc. NIPS
, pp. 396-404
-
-
Le Cun, Y.1
-
2
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. NIPS, 2012, pp. 1097-1105.
-
(2012)
Proc. NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
3
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, "Learning deep features for scene recognition using places database," in Proc. NIPS, 2014, pp. 487-495.
-
(2014)
Proc. NIPS
, pp. 487-495
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
-
4
-
-
84906352772
-
Multi-scale orderless pooling of deep convolutional activation features
-
Y. Gong, L. Wang, R. Guo, and S. Lazebnik, "Multi-scale orderless pooling of deep convolutional activation features," in Proc. ECCV, 2014, pp. 392-407.
-
(2014)
Proc. ECCV
, pp. 392-407
-
-
Gong, Y.1
Wang, L.2
Guo, R.3
Lazebnik, S.4
-
5
-
-
85072028231
-
Return of the devil in the details: Delving deep into convolutional nets
-
K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, "Return of the devil in the details: Delving deep into convolutional nets," in Proc. British Mach. Vis. Conf., 2014.
-
(2014)
Proc. British Mach. Vis. Conf.
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
8
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," in Proc. ECCV, 2014, pp. 1-14.
-
(2014)
Proc. ECCV
, pp. 1-14
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
9
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. CVPR, 2014, pp. 580-587.
-
(2014)
Proc. CVPR
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
10
-
-
84906347546
-
-
[Online]
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. (2013). "OverFeat: Integrated recognition, localization and detection using convolutional networks." [Online]. Available: http://arxiv.org/abs/1312.6229
-
(2013)
OverFeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
12
-
-
84911198048
-
DeepFace: Closing the gap to human-level performance in face verification
-
Jun.
-
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "DeepFace: Closing the gap to human-level performance in face verification," in Proc. CVPR, Jun. 2014, pp. 1701-1708.
-
(2014)
Proc. CVPR
, pp. 1701-1708
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
13
-
-
84911126535
-
Deep learning face representation from predicting 10,000 classes
-
Y. Sun, X. Wang, and X. Tang, "Deep learning face representation from predicting 10,000 classes," in Proc. CVPR, 2014, pp. 1891-1898.
-
(2014)
Proc. CVPR
, pp. 1891-1898
-
-
Sun, Y.1
Wang, X.2
Tang, X.3
-
14
-
-
84911381180
-
DeepPose: Human pose estimation via deep neural networks
-
A. Toshev and C. Szegedy, "DeepPose: Human pose estimation via deep neural networks," in Proc. CVPR, 2014, pp. 1653-1660.
-
(2014)
Proc. CVPR
, pp. 1653-1660
-
-
Toshev, A.1
Szegedy, C.2
-
15
-
-
84874250121
-
-
Ph.D. dissertation, Dept. Comput. Graph. Multimedia, Brno Univ. Technol., Brno, Czech Republic
-
T. Mikolov, "Statistical language models based on neural networks," Ph.D. dissertation, Dept. Comput. Graph. Multimedia, Brno Univ. Technol., Brno, Czech Republic, 2012.
-
(2012)
Statistical Language Models Based on Neural Networks
-
-
Mikolov, T.1
-
16
-
-
84884966819
-
-
Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada
-
I. Sutskever, "Training recurrent neural networks," Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, 2013.
-
(2013)
Training Recurrent Neural Networks
-
-
Sutskever, I.1
-
17
-
-
84919782249
-
A clockwork RNN
-
Beijing, China
-
J. Koutník, K. Greff, F. Gomez, and J. Schmidhuber, "A clockwork RNN," in Proc. Int. Conf. Mach. Learn. (ICML), vol. 32. Beijing, China, 2014, pp. 1863-1871.
-
(2014)
Proc. Int. Conf. Mach. Learn. (ICML)
, vol.32
, pp. 1863-1871
-
-
Koutník, J.1
Greff, K.2
Gomez, F.3
Schmidhuber, J.4
-
18
-
-
84936143793
-
Towards end-to-end speech recognition with recurrent neural networks
-
A. Graves and N. Jaitly, "Towards end-to-end speech recognition with recurrent neural networks," in Proc. ICML, 2014, pp. 1764-1772.
-
(2014)
Proc. ICML
, pp. 1764-1772
-
-
Graves, A.1
Jaitly, N.2
-
19
-
-
84858768256
-
The recurrent temporal restricted Boltzmann machine
-
I. Sutskever, G. E. Hinton, and G. W. Taylor, "The recurrent temporal restricted Boltzmann machine," in Proc. NIPS, 2009, pp. 1601-1608.
-
(2009)
Proc. NIPS
, pp. 1601-1608
-
-
Sutskever, I.1
Hinton, G.E.2
Taylor, G.W.3
-
20
-
-
84867129058
-
Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
-
N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription," in Proc. ICML, 2012, pp. 1159-1166.
-
(2012)
Proc. ICML
, pp. 1159-1166
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
21
-
-
26444565569
-
Finding structure in time
-
Mar.
-
J. L. Elman, "Finding structure in time," Cognit. Sci., vol. 14, no. 2, pp. 179-211, Mar. 1990.
-
(1990)
Cognit. Sci.
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
22
-
-
33749833931
-
-
German Nat. Res. Center Inf. Technol., GMD Rep. 159
-
H. Jaeger, Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the 'Echo State Network' Approach. German Nat. Res. Center Inf. Technol., GMD Rep. 159, 2002, pp. 1-48.
-
(2002)
Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the 'Echo State Network' Approach
, pp. 1-48
-
-
Jaeger, H.1
-
23
-
-
71249112130
-
Offline handwriting recognition with multidimensional recurrent neural networks
-
A. Graves and J. Schmidhuber, "Offline handwriting recognition with multidimensional recurrent neural networks," in Proc. NIPS, 2009, pp. 545-552.
-
(2009)
Proc. NIPS
, pp. 545-552
-
-
Graves, A.1
Schmidhuber, J.2
-
24
-
-
84937153918
-
Convolutional recurrent neural networks: Learning spatial dependencies for image representation
-
Jun.
-
Z. Zuo et al., "Convolutional recurrent neural networks: Learning spatial dependencies for image representation," in Proc. CVPRW, Jun. 2015, pp. 18-26.
-
(2015)
Proc. CVPRW
, pp. 18-26
-
-
Zuo, Z.1
-
25
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring mid-level image representations using convolutional neural networks," in Proc. CVPR, 2014, pp. 1717-1724.
-
(2014)
Proc. CVPR
, pp. 1717-1724
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
26
-
-
84906332834
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
J. Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. Int. Conf. Mach. Learn. (ICML), 2014, pp. 647-655.
-
(2014)
Proc. Int. Conf. Mach. Learn. (ICML)
, pp. 647-655
-
-
Donahue, J.1
-
27
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Jul.
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
28
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. ICML, 2009, pp. 609-616.
-
(2009)
Proc. ICML
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
29
-
-
78149306047
-
3D object recognition with deep belief nets
-
V. Nair and G. E. Hinton, "3D object recognition with deep belief nets," in Proc. NIPS, 2009, pp. 1339-1347.
-
(2009)
Proc. NIPS
, pp. 1339-1347
-
-
Nair, V.1
Hinton, G.E.2
-
30
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
31
-
-
84906494714
-
Modeling video dynamics with deep dynencoder
-
X. Yan, H. Chang, S. Shan, and X. Chen, "Modeling video dynamics with deep dynencoder," in Proc. ECCV, 2014, pp. 215-230.
-
(2014)
Proc. ECCV
, pp. 215-230
-
-
Yan, X.1
Chang, H.2
Shan, S.3
Chen, X.4
-
32
-
-
84906502960
-
Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment
-
J. Zhang, S. Shan, M. Kan, and X. Chen, "Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment," in Proc. ECCV, 2014, pp. 1-16.
-
(2014)
Proc. ECCV
, pp. 1-16
-
-
Zhang, J.1
Shan, S.2
Kan, M.3
Chen, X.4
-
33
-
-
84899017362
-
Generalized denoising auto-encoders as generative models
-
Y. Bengio, L. Yao, G. Alain, and P. Vincent, "Generalized denoising auto-encoders as generative models," in Proc. NIPS, 2013, pp. 899-907.
-
(2013)
Proc. NIPS
, pp. 899-907
-
-
Bengio, Y.1
Yao, L.2
Alain, G.3
Vincent, P.4
-
34
-
-
84930630277
-
Deep learning
-
May
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, May 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
35
-
-
80053459857
-
Generating text with recurrent neural networks
-
I. Sutskever, J. Martens, and G. E. Hinton, "Generating text with recurrent neural networks," in Proc. ICML, 2011, pp. 1017-1024.
-
(2011)
Proc. ICML
, pp. 1017-1024
-
-
Sutskever, I.1
Martens, J.2
Hinton, G.E.3
-
37
-
-
84925305292
-
Recurrent convolutional neural networks for scene labeling
-
P. O. Pinheiro and R. Collobert, "Recurrent convolutional neural networks for scene labeling," in Proc. ICML, 2014, pp. 1-9.
-
(2014)
Proc. ICML
, pp. 1-9
-
-
Pinheiro, P.O.1
Collobert, R.2
-
41
-
-
84937959846
-
Recurrent models of visual attention
-
V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, "Recurrent models of visual attention," in Proc. NIPS, 2014, pp. 2204-2212.
-
(2014)
Proc. NIPS
, pp. 2204-2212
-
-
Mnih, V.1
Heess, N.2
Graves, A.3
Kavukcuoglu, K.4
-
43
-
-
84971668900
-
-
[Online]
-
J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. (2015). "Beyond short snippets: Deep networks for video classification." [Online]. Available: http://arxiv.org/abs/1503.08909
-
(2015)
Beyond Short Snippets: Deep Networks for Video Classification
-
-
Ng, J.Y.-H.1
Hausknecht, M.2
Vijayanarasimhan, S.3
Vinyals, O.4
Monga, R.5
Toderici, G.6
-
46
-
-
84944069490
-
-
[Online]
-
S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. Saenko. (2014). "Translating videos to natural language using deep recurrent neural networks." [Online]. Available: http://arxiv.org/abs/1412.4729
-
(2014)
Translating Videos to Natural Language Using Deep Recurrent Neural Networks
-
-
Venugopalan, S.1
Xu, H.2
Donahue, J.3
Rohrbach, M.4
Mooney, R.5
Saenko, K.6
-
47
-
-
84939821073
-
-
[Online]
-
J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille. (2014). "Deep captioning with multimodal recurrent neural networks (m-RNN)." [Online]. Available: http://arxiv.org/abs/1412.6632
-
(2014)
Deep Captioning with Multimodal Recurrent Neural Networks (M-RNN)
-
-
Mao, J.1
Xu, W.2
Yang, Y.3
Wang, J.4
Huang, Z.5
Yuille, A.6
-
48
-
-
84971668893
-
-
[Online]
-
F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio. (2015). "ReNet: A recurrent neural network based alternative to convolutional networks." [Online]. Available: http://arxiv.org/abs/1505.00393
-
(2015)
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks
-
-
Visin, F.1
Kastner, K.2
Cho, K.3
Matteucci, M.4
Courville, A.5
Bengio, Y.6
-
49
-
-
84959217041
-
Hierarchical recurrent neural network for skeleton based action recognition
-
Jun.
-
Y. Du, W. Wang, and L. Wang, "Hierarchical recurrent neural network for skeleton based action recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1110-1118.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 1110-1118
-
-
Du, Y.1
Wang, W.2
Wang, L.3
-
50
-
-
84959935599
-
Hierarchical recurrent neural network for document modeling
-
R. Lin, S. Liu, M. Yang, M. Li, M. Zhou, and S. Li, "Hierarchical recurrent neural network for document modeling," in Proc. Conf. Empirical Methods Natural Lang. Process., 2015, pp. 899-907.
-
(2015)
Proc. Conf. Empirical Methods Natural Lang. Process
, pp. 899-907
-
-
Lin, R.1
Liu, S.2
Yang, M.3
Li, M.4
Zhou, M.5
Li, S.6
-
51
-
-
85057230110
-
Hierarchical recurrent neural networks for long-term dependencies
-
S. El Hihi and Y. Bengio, "Hierarchical recurrent neural networks for long-term dependencies," in Proc. NIPS, 1995, pp. 493-499.
-
(1995)
Proc. NIPS
, pp. 493-499
-
-
El Hihi, S.1
Bengio, Y.2
-
52
-
-
84911897421
-
High-order distance-based multiview stochastic learning in image classification
-
Dec.
-
J. Yu, Y. Rui, Y. Y. Tang, and D. Tao, "High-order distance-based multiview stochastic learning in image classification," IEEE Trans. Cybern., vol. 44, no. 12, pp. 2431-2442, Dec. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.12
, pp. 2431-2442
-
-
Yu, J.1
Rui, Y.2
Tang, Y.Y.3
Tao, D.4
-
53
-
-
84862575703
-
Adaptive hypergraph learning and its application in image classification
-
Jul.
-
J. Yu, D. Tao, and M. Wang, "Adaptive hypergraph learning and its application in image classification," IEEE Trans. Image Process., vol. 21, no. 7, pp. 3262-3272, Jul. 2012.
-
(2012)
IEEE Trans. Image Process
, vol.21
, Issue.7
, pp. 3262-3272
-
-
Yu, J.1
Tao, D.2
Wang, M.3
-
54
-
-
77955996870
-
Localityconstrained Linear Coding for image classification
-
Jun.
-
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, "Localityconstrained Linear Coding for image classification," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2010, pp. 3360-3367.
-
(2010)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
, pp. 3360-3367
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
-
55
-
-
84863011935
-
Fisher discrimination dictionary learning for sparse representation
-
Nov.
-
M. Yang, L. Zhang, X. Feng, and D. Zhang, "Fisher discrimination dictionary learning for sparse representation," in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Nov. 2011, pp. 543-550.
-
(2011)
Proc. IEEE Int. Conf. Comput. Vis. (ICCV)
, pp. 543-550
-
-
Yang, M.1
Zhang, L.2
Feng, X.3
Zhang, D.4
-
57
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
58
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
Jun.
-
N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. CVPR, Jun. 2005, pp. 886-893.
-
(2005)
Proc. CVPR
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
59
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
61
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
Jun.
-
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database," in Proc. CVPR, Jun. 2009, pp. 248-255.
-
(2009)
Proc. CVPR
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
62
-
-
77955988947
-
SUN database: Large-scale scene recognition from abbey to zoo
-
Jun.
-
J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, "SUN database: Large-scale scene recognition from abbey to zoo," in Proc. CVPR, Jun. 2010, pp. 3485-3492.
-
(2010)
Proc. CVPR
, pp. 3485-3492
-
-
Xiao, J.1
Hays, J.2
Ehinger, K.A.3
Oliva, A.4
Torralba, A.5
-
63
-
-
70450162315
-
Recognizing indoor scenes
-
Jun.
-
A. Quattoni and A. Torralba, "Recognizing indoor scenes," in Proc. CVPR, Jun. 2009, pp. 413-420.
-
(2009)
Proc. CVPR
, pp. 413-420
-
-
Quattoni, A.1
Torralba, A.2
-
64
-
-
84883487458
-
Image classification with the Fisher vector: Theory and practice
-
Dec.
-
J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, "Image classification with the Fisher vector: Theory and practice," Int. J. Comput. Vis., vol. 105, no. 3, pp. 222-245, Dec. 2013.
-
(2013)
Int. J. Comput. Vis.
, vol.105
, Issue.3
, pp. 222-245
-
-
Sánchez, J.1
Perronnin, F.2
Mensink, T.3
Verbeek, J.4
-
65
-
-
84883487458
-
Image classification with the Fisher vector: Theory and practice
-
Dec.
-
J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, "Image classification with the Fisher vector: Theory and practice," Int. J. Comput. Vis., vol. 105, no. 3, pp. 222-245, Dec. 2013.
-
(2013)
Int. J. Comput. Vis.
, vol.105
, Issue.3
, pp. 222-245
-
-
Sánchez, J.1
Perronnin, F.2
Mensink, T.3
Verbeek, J.4
-
66
-
-
84911375886
-
Scalable multitask representation learning for scene classification
-
Jun.
-
M. Lapin, B. Schiele, and M. Hein, "Scalable multitask representation learning for scene classification," in Proc. CVPR, Jun. 2014, pp. 1434-1441.
-
(2014)
Proc. CVPR
, pp. 1434-1441
-
-
Lapin, M.1
Schiele, B.2
Hein, M.3
-
67
-
-
85162513516
-
Object bank: A highlevel image representation for scene classification & semantic feature sparsification
-
L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing, "Object bank: A highlevel image representation for scene classification & semantic feature sparsification," in Proc. NIPS, 2010, pp. 1378-1386.
-
(2010)
Proc. NIPS
, pp. 1378-1386
-
-
Li, L.-J.1
Su, H.2
Fei-Fei, L.3
Xing, E.P.4
-
68
-
-
84887327253
-
Harvesting mid-level visual concepts from large-scale Internet images
-
Jun.
-
Q. Li, J. Wu, and Z. Tu, "Harvesting mid-level visual concepts from large-scale Internet images," in Proc. CVPR, Jun. 2013, pp. 851-858.
-
(2013)
Proc. CVPR
, pp. 851-858
-
-
Li, Q.1
Wu, J.2
Tu, Z.3
-
69
-
-
84911382242
-
Max-margin multipleinstance dictionary learning
-
X. Wang, B. Wang, X. Bai, W. Liu, and Z. Tu, "Max-margin multipleinstance dictionary learning," in Proc. ICML, 2013, pp. 846-854.
-
(2013)
Proc. ICML
, pp. 846-854
-
-
Wang, X.1
Wang, B.2
Bai, X.3
Liu, W.4
Tu, Z.5
-
70
-
-
84887325186
-
Blocks that shout: Distinctive parts for scene classification
-
Jun.
-
M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman, "Blocks that shout: Distinctive parts for scene classification," in Proc. CVPR, Jun. 2013, pp. 923-930.
-
(2013)
Proc. CVPR
, pp. 923-930
-
-
Juneja, M.1
Vedaldi, A.2
Jawahar, C.V.3
Zisserman, A.4
-
71
-
-
84898936638
-
Mid-level visual element discovery as discriminative mode seeking
-
C. Doersch, A. Gupta, and A. A. Efros, "Mid-level visual element discovery as discriminative mode seeking," in Proc. NIPS, 2013, pp. 494-502.
-
(2013)
Proc. NIPS
, pp. 494-502
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
72
-
-
84911452981
-
Learning important spatial pooling regions for scene classification
-
Jun.
-
D. Lin, C. Lu, R. Liao, and J. Jia, "Learning important spatial pooling regions for scene classification," in Proc. CVPR, Jun. 2014, pp. 3726-3733.
-
(2014)
Proc. CVPR
, pp. 3726-3733
-
-
Lin, D.1
Lu, C.2
Liao, R.3
Jia, J.4
|