메뉴 건너뛰기




Volumn 25, Issue 7, 2016, Pages 2983-2996

Learning Contextual Dependence With Convolutional Hierarchical Recurrent Neural Networks

Author keywords

Convolutional Neural Networks; Deep Learning; Image Classification; Recurrent Neural Networks

Indexed keywords

C (PROGRAMMING LANGUAGE); CONVOLUTION; COSTS; ENCODING (SYMBOLS); NEURAL NETWORKS; RECURRENT NEURAL NETWORKS;

EID: 84971671959     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2016.2548241     Document Type: Article
Times cited : (102)

References (72)
  • 1
    • 0000494467 scopus 로고
    • Handwritten digit recognition with a back-propagation network
    • Y. Le Cun et al., "Handwritten digit recognition with a back-propagation network," in Proc. NIPS, 1990, pp. 396-404.
    • (1990) Proc. NIPS , pp. 396-404
    • Le Cun, Y.1
  • 2
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. NIPS, 2012, pp. 1097-1105.
    • (2012) Proc. NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 3
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, "Learning deep features for scene recognition using places database," in Proc. NIPS, 2014, pp. 487-495.
    • (2014) Proc. NIPS , pp. 487-495
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5
  • 4
    • 84906352772 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik, "Multi-scale orderless pooling of deep convolutional activation features," in Proc. ECCV, 2014, pp. 392-407.
    • (2014) Proc. ECCV , pp. 392-407
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 8
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," in Proc. ECCV, 2014, pp. 1-14.
    • (2014) Proc. ECCV , pp. 1-14
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 9
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. CVPR, 2014, pp. 580-587.
    • (2014) Proc. CVPR , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 12
    • 84911198048 scopus 로고    scopus 로고
    • DeepFace: Closing the gap to human-level performance in face verification
    • Jun.
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "DeepFace: Closing the gap to human-level performance in face verification," in Proc. CVPR, Jun. 2014, pp. 1701-1708.
    • (2014) Proc. CVPR , pp. 1701-1708
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 13
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10,000 classes
    • Y. Sun, X. Wang, and X. Tang, "Deep learning face representation from predicting 10,000 classes," in Proc. CVPR, 2014, pp. 1891-1898.
    • (2014) Proc. CVPR , pp. 1891-1898
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 14
    • 84911381180 scopus 로고    scopus 로고
    • DeepPose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy, "DeepPose: Human pose estimation via deep neural networks," in Proc. CVPR, 2014, pp. 1653-1660.
    • (2014) Proc. CVPR , pp. 1653-1660
    • Toshev, A.1    Szegedy, C.2
  • 15
    • 84874250121 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Comput. Graph. Multimedia, Brno Univ. Technol., Brno, Czech Republic
    • T. Mikolov, "Statistical language models based on neural networks," Ph.D. dissertation, Dept. Comput. Graph. Multimedia, Brno Univ. Technol., Brno, Czech Republic, 2012.
    • (2012) Statistical Language Models Based on Neural Networks
    • Mikolov, T.1
  • 16
    • 84884966819 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada
    • I. Sutskever, "Training recurrent neural networks," Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, 2013.
    • (2013) Training Recurrent Neural Networks
    • Sutskever, I.1
  • 18
    • 84936143793 scopus 로고    scopus 로고
    • Towards end-to-end speech recognition with recurrent neural networks
    • A. Graves and N. Jaitly, "Towards end-to-end speech recognition with recurrent neural networks," in Proc. ICML, 2014, pp. 1764-1772.
    • (2014) Proc. ICML , pp. 1764-1772
    • Graves, A.1    Jaitly, N.2
  • 19
    • 84858768256 scopus 로고    scopus 로고
    • The recurrent temporal restricted Boltzmann machine
    • I. Sutskever, G. E. Hinton, and G. W. Taylor, "The recurrent temporal restricted Boltzmann machine," in Proc. NIPS, 2009, pp. 1601-1608.
    • (2009) Proc. NIPS , pp. 1601-1608
    • Sutskever, I.1    Hinton, G.E.2    Taylor, G.W.3
  • 20
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
    • N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription," in Proc. ICML, 2012, pp. 1159-1166.
    • (2012) Proc. ICML , pp. 1159-1166
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 21
    • 26444565569 scopus 로고
    • Finding structure in time
    • Mar.
    • J. L. Elman, "Finding structure in time," Cognit. Sci., vol. 14, no. 2, pp. 179-211, Mar. 1990.
    • (1990) Cognit. Sci. , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 23
    • 71249112130 scopus 로고    scopus 로고
    • Offline handwriting recognition with multidimensional recurrent neural networks
    • A. Graves and J. Schmidhuber, "Offline handwriting recognition with multidimensional recurrent neural networks," in Proc. NIPS, 2009, pp. 545-552.
    • (2009) Proc. NIPS , pp. 545-552
    • Graves, A.1    Schmidhuber, J.2
  • 24
    • 84937153918 scopus 로고    scopus 로고
    • Convolutional recurrent neural networks: Learning spatial dependencies for image representation
    • Jun.
    • Z. Zuo et al., "Convolutional recurrent neural networks: Learning spatial dependencies for image representation," in Proc. CVPRW, Jun. 2015, pp. 18-26.
    • (2015) Proc. CVPRW , pp. 18-26
    • Zuo, Z.1
  • 25
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring mid-level image representations using convolutional neural networks," in Proc. CVPR, 2014, pp. 1717-1724.
    • (2014) Proc. CVPR , pp. 1717-1724
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 26
    • 84906332834 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • J. Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition," in Proc. Int. Conf. Mach. Learn. (ICML), 2014, pp. 647-655.
    • (2014) Proc. Int. Conf. Mach. Learn. (ICML) , pp. 647-655
    • Donahue, J.1
  • 27
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Jul.
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 28
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. ICML, 2009, pp. 609-616.
    • (2009) Proc. ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 29
    • 78149306047 scopus 로고    scopus 로고
    • 3D object recognition with deep belief nets
    • V. Nair and G. E. Hinton, "3D object recognition with deep belief nets," in Proc. NIPS, 2009, pp. 1339-1347.
    • (2009) Proc. NIPS , pp. 1339-1347
    • Nair, V.1    Hinton, G.E.2
  • 30
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 31
    • 84906494714 scopus 로고    scopus 로고
    • Modeling video dynamics with deep dynencoder
    • X. Yan, H. Chang, S. Shan, and X. Chen, "Modeling video dynamics with deep dynencoder," in Proc. ECCV, 2014, pp. 215-230.
    • (2014) Proc. ECCV , pp. 215-230
    • Yan, X.1    Chang, H.2    Shan, S.3    Chen, X.4
  • 32
    • 84906502960 scopus 로고    scopus 로고
    • Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment
    • J. Zhang, S. Shan, M. Kan, and X. Chen, "Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment," in Proc. ECCV, 2014, pp. 1-16.
    • (2014) Proc. ECCV , pp. 1-16
    • Zhang, J.1    Shan, S.2    Kan, M.3    Chen, X.4
  • 33
    • 84899017362 scopus 로고    scopus 로고
    • Generalized denoising auto-encoders as generative models
    • Y. Bengio, L. Yao, G. Alain, and P. Vincent, "Generalized denoising auto-encoders as generative models," in Proc. NIPS, 2013, pp. 899-907.
    • (2013) Proc. NIPS , pp. 899-907
    • Bengio, Y.1    Yao, L.2    Alain, G.3    Vincent, P.4
  • 34
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, May 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 35
    • 80053459857 scopus 로고    scopus 로고
    • Generating text with recurrent neural networks
    • I. Sutskever, J. Martens, and G. E. Hinton, "Generating text with recurrent neural networks," in Proc. ICML, 2011, pp. 1017-1024.
    • (2011) Proc. ICML , pp. 1017-1024
    • Sutskever, I.1    Martens, J.2    Hinton, G.E.3
  • 37
    • 84925305292 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene labeling
    • P. O. Pinheiro and R. Collobert, "Recurrent convolutional neural networks for scene labeling," in Proc. ICML, 2014, pp. 1-9.
    • (2014) Proc. ICML , pp. 1-9
    • Pinheiro, P.O.1    Collobert, R.2
  • 49
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical recurrent neural network for skeleton based action recognition
    • Jun.
    • Y. Du, W. Wang, and L. Wang, "Hierarchical recurrent neural network for skeleton based action recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1110-1118.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1110-1118
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 51
    • 85057230110 scopus 로고
    • Hierarchical recurrent neural networks for long-term dependencies
    • S. El Hihi and Y. Bengio, "Hierarchical recurrent neural networks for long-term dependencies," in Proc. NIPS, 1995, pp. 493-499.
    • (1995) Proc. NIPS , pp. 493-499
    • El Hihi, S.1    Bengio, Y.2
  • 52
    • 84911897421 scopus 로고    scopus 로고
    • High-order distance-based multiview stochastic learning in image classification
    • Dec.
    • J. Yu, Y. Rui, Y. Y. Tang, and D. Tao, "High-order distance-based multiview stochastic learning in image classification," IEEE Trans. Cybern., vol. 44, no. 12, pp. 2431-2442, Dec. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.12 , pp. 2431-2442
    • Yu, J.1    Rui, Y.2    Tang, Y.Y.3    Tao, D.4
  • 53
    • 84862575703 scopus 로고    scopus 로고
    • Adaptive hypergraph learning and its application in image classification
    • Jul.
    • J. Yu, D. Tao, and M. Wang, "Adaptive hypergraph learning and its application in image classification," IEEE Trans. Image Process., vol. 21, no. 7, pp. 3262-3272, Jul. 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.7 , pp. 3262-3272
    • Yu, J.1    Tao, D.2    Wang, M.3
  • 57
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 58
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Jun.
    • N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. CVPR, Jun. 2005, pp. 886-893.
    • (2005) Proc. CVPR , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 59
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 61
    • 85198028989 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • Jun.
    • J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database," in Proc. CVPR, Jun. 2009, pp. 248-255.
    • (2009) Proc. CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.J.4    Li, K.5    Fei-Fei, L.6
  • 62
    • 77955988947 scopus 로고    scopus 로고
    • SUN database: Large-scale scene recognition from abbey to zoo
    • Jun.
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, "SUN database: Large-scale scene recognition from abbey to zoo," in Proc. CVPR, Jun. 2010, pp. 3485-3492.
    • (2010) Proc. CVPR , pp. 3485-3492
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torralba, A.5
  • 63
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • Jun.
    • A. Quattoni and A. Torralba, "Recognizing indoor scenes," in Proc. CVPR, Jun. 2009, pp. 413-420.
    • (2009) Proc. CVPR , pp. 413-420
    • Quattoni, A.1    Torralba, A.2
  • 64
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the Fisher vector: Theory and practice
    • Dec.
    • J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, "Image classification with the Fisher vector: Theory and practice," Int. J. Comput. Vis., vol. 105, no. 3, pp. 222-245, Dec. 2013.
    • (2013) Int. J. Comput. Vis. , vol.105 , Issue.3 , pp. 222-245
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 65
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the Fisher vector: Theory and practice
    • Dec.
    • J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, "Image classification with the Fisher vector: Theory and practice," Int. J. Comput. Vis., vol. 105, no. 3, pp. 222-245, Dec. 2013.
    • (2013) Int. J. Comput. Vis. , vol.105 , Issue.3 , pp. 222-245
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 66
    • 84911375886 scopus 로고    scopus 로고
    • Scalable multitask representation learning for scene classification
    • Jun.
    • M. Lapin, B. Schiele, and M. Hein, "Scalable multitask representation learning for scene classification," in Proc. CVPR, Jun. 2014, pp. 1434-1441.
    • (2014) Proc. CVPR , pp. 1434-1441
    • Lapin, M.1    Schiele, B.2    Hein, M.3
  • 67
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A highlevel image representation for scene classification & semantic feature sparsification
    • L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing, "Object bank: A highlevel image representation for scene classification & semantic feature sparsification," in Proc. NIPS, 2010, pp. 1378-1386.
    • (2010) Proc. NIPS , pp. 1378-1386
    • Li, L.-J.1    Su, H.2    Fei-Fei, L.3    Xing, E.P.4
  • 68
    • 84887327253 scopus 로고    scopus 로고
    • Harvesting mid-level visual concepts from large-scale Internet images
    • Jun.
    • Q. Li, J. Wu, and Z. Tu, "Harvesting mid-level visual concepts from large-scale Internet images," in Proc. CVPR, Jun. 2013, pp. 851-858.
    • (2013) Proc. CVPR , pp. 851-858
    • Li, Q.1    Wu, J.2    Tu, Z.3
  • 69
    • 84911382242 scopus 로고    scopus 로고
    • Max-margin multipleinstance dictionary learning
    • X. Wang, B. Wang, X. Bai, W. Liu, and Z. Tu, "Max-margin multipleinstance dictionary learning," in Proc. ICML, 2013, pp. 846-854.
    • (2013) Proc. ICML , pp. 846-854
    • Wang, X.1    Wang, B.2    Bai, X.3    Liu, W.4    Tu, Z.5
  • 70
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • Jun.
    • M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman, "Blocks that shout: Distinctive parts for scene classification," in Proc. CVPR, Jun. 2013, pp. 923-930.
    • (2013) Proc. CVPR , pp. 923-930
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.V.3    Zisserman, A.4
  • 71
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • C. Doersch, A. Gupta, and A. A. Efros, "Mid-level visual element discovery as discriminative mode seeking," in Proc. NIPS, 2013, pp. 494-502.
    • (2013) Proc. NIPS , pp. 494-502
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 72
    • 84911452981 scopus 로고    scopus 로고
    • Learning important spatial pooling regions for scene classification
    • Jun.
    • D. Lin, C. Lu, R. Liao, and J. Jia, "Learning important spatial pooling regions for scene classification," in Proc. CVPR, Jun. 2014, pp. 3726-3733.
    • (2014) Proc. CVPR , pp. 3726-3733
    • Lin, D.1    Lu, C.2    Liao, R.3    Jia, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.