메뉴 건너뛰기




Volumn 8, Issue 4, 2016, Pages

Corn response to climate stress detected with satellite-based NDVI time series

Author keywords

Corn NDVI climate stress relation; Risky cell detection; Temporal and spatial corn growth variability

Indexed keywords

CROPS; PLANTS (BOTANY); PRECIPITATION (METEOROLOGY); RAIN; REGRESSION ANALYSIS; VEGETATION; WATERSHEDS;

EID: 84971656995     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8040269     Document Type: Article
Times cited : (70)

References (51)
  • 1
    • 0003265940 scopus 로고
    • Effects of change in climate and weather variability on the yields of corn and soybeans
    • Thompson, L.M. Effects of change in climate and weather variability on the yields of corn and soybeans. J. Prod. Agric. 1988, 1, 20-27.
    • (1988) J. Prod. Agric , vol.1 , pp. 20-27
    • Thompson, L.M.1
  • 2
    • 84870656528 scopus 로고    scopus 로고
    • Climate variability in areas of the world with high production of soybeans and corn: Its relationship to crop yields
    • Llano, M.P.; Vargas, W.; Naumann, G. Climate variability in areas of the world with high production of soybeans and corn: Its relationship to crop yields. Meteorol. Appl. 2012, 19, 385-396.
    • (2012) Meteorol. Appl , vol.19 , pp. 385-396
    • Llano, M.P.1    Vargas, W.2    Naumann, G.3
  • 3
    • 77954814828 scopus 로고    scopus 로고
    • Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States
    • Mishra, V.; Cherkauer, K.A. Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agric. For. Meteorol. 2010, 150, 1030-1045.
    • (2010) Agric. For. Meteorol , vol.150 , pp. 1030-1045
    • Mishra, V.1    Cherkauer, K.A.2
  • 4
    • 0032191810 scopus 로고    scopus 로고
    • Water use efficiency of controlled alternate irrigation on root-divided maize plants
    • Kang, S.; Liang, Z.; Hu, W.; Zhang, J. Water use efficiency of controlled alternate irrigation on root-divided maize plants. Agric. Water Manag. 1998, 38, 69-76.
    • (1998) Agric. Water Manag , vol.38 , pp. 69-76
    • Kang, S.1    Liang, Z.2    Hu, W.3    Zhang, J.4
  • 6
    • 84860371594 scopus 로고    scopus 로고
    • Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons
    • Liu, J.; Pattey, E.; Jego, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347-358.
    • (2012) Remote Sens. Environ , vol.123 , pp. 347-358
    • Liu, J.1    Pattey, E.2    Jego, G.3
  • 7
    • 84920935754 scopus 로고    scopus 로고
    • A simple Landsat-MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution
    • Bhattarai, N.; Quackenbush, L.J.; Dougherty, M.; Marzen, L.J. A simple Landsat-MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution. Int. J. Remote Sens. 2015, 36, 115-143.
    • (2015) Int. J. Remote Sens , vol.36 , pp. 115-143
    • Bhattarai, N.1    Quackenbush, L.J.2    Dougherty, M.3    Marzen, L.J.4
  • 8
    • 84882641525 scopus 로고    scopus 로고
    • Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction
    • Ines, A.V.M.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ. 2013, 138, 149-164.
    • (2013) Remote Sens. Environ , vol.138 , pp. 149-164
    • Ines, A.V.M.1    Das, N.N.2    Hansen, J.W.3    Njoku, E.G.4
  • 9
    • 34547898030 scopus 로고    scopus 로고
    • Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts
    • De Wit, A.J.W.; Van Diepen, C.A. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agric. Forest Meteorol. 2007, 146, 38-56.
    • (2007) Agric. Forest Meteorol , vol.146 , pp. 38-56
    • De Wit, A.J.W.1    Van Diepen, C.A.2
  • 10
    • 84881482288 scopus 로고    scopus 로고
    • Remote sensing based detection of crop phenology for agricultural zones in China using a new threshold method
    • You, X.; Meng, J.; Zhang, M.; Dong, T. Remote sensing based detection of crop phenology for agricultural zones in China using a new threshold method. Remote Sens. 2013, 5, 3190-3211.
    • (2013) Remote Sens , vol.5 , pp. 3190-3211
    • You, X.1    Meng, J.2    Zhang, M.3    Dong, T.4
  • 11
    • 48249097297 scopus 로고
    • Physical and physiological basis for the reflectance of visble and near-infrared radiation from vegetation
    • Knipling, E.B. Physical and physiological basis for the reflectance of visble and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155-159.
    • (1970) Remote Sens. Environ , vol.1 , pp. 155-159
    • Knipling, E.B.1
  • 12
    • 84868704441 scopus 로고    scopus 로고
    • Green Leaf Area Index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity
    • Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Vina, A.; Arkebauer, T.; Rundquist, D. Green Leaf Area Index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336-1347.
    • (2012) Agron. J , vol.104 , pp. 1336-1347
    • Nguy-Robertson, A.1    Gitelson, A.2    Peng, Y.3    Vina, A.4    Arkebauer, T.5    Rundquist, D.6
  • 13
    • 77957988945 scopus 로고    scopus 로고
    • Value of using different vegetative indices to quantify agrigultural crop characteristics at different growth stages under varying management practices
    • Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agrigultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562-578.
    • (2010) Remote Sens , vol.2 , pp. 562-578
    • Hatfield, J.L.1    Prueger, J.H.2
  • 14
    • 84860525505 scopus 로고    scopus 로고
    • Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems
    • Huang, N.; Niu, Z.; Zhan, Y.; Xu, S.; Tappert, M.C.;Wu, C.; Huang, W.; Gao, S.; Hou, X.; Cai, D. Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Agric. For. Meterol. 2012, 160, 80-89.
    • (2012) Agric. For. Meterol , vol.160 , pp. 80-89
    • Huang, N.1    Niu, Z.2    Zhan, Y.3    Xu, S.4    Tappert, M.C.5    Wu, C.6    Huang, W.7    Gao, S.8    Hou, X.9    Cai, D.10
  • 16
    • 0030295308 scopus 로고    scopus 로고
    • Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of corn
    • Ma, B.L.; Morrision, M.H.; Dwyer, L.M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of corn. Agron. J. 1996, 88, 915-920.
    • (1996) Agron. J , vol.88 , pp. 915-920
    • Ma, B.L.1    Morrision, M.H.2    Dwyer, L.M.3
  • 17
    • 44449178229 scopus 로고    scopus 로고
    • Active sensor reflectance measurements to corn nitrogen status and yield potential
    • Solari, F.; Shanahan, J.; Ferguson, R.B.; Schepers, J.S.; Gitelson, A.A. Active sensor reflectance measurements to corn nitrogen status and yield potential. Agron. J. 2008, 100, 571-579.
    • (2008) Agron. J , vol.100 , pp. 571-579
    • Solari, F.1    Shanahan, J.2    Ferguson, R.B.3    Schepers, J.S.4    Gitelson, A.A.5
  • 19
    • 79952395809 scopus 로고    scopus 로고
    • Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation
    • Fang, H.; Liang, S.; Hoogenboom, G. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. Int. J. Remote Sens. 2001, 32, 1039-1065.
    • (2001) Int. J. Remote Sens , vol.32 , pp. 1039-1065
    • Fang, H.1    Liang, S.2    Hoogenboom, G.3
  • 20
    • 80054870545 scopus 로고    scopus 로고
    • Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach
    • Casa, R.; Varella, H.; Buis, S.; Guérif, M.; De-Solan, B.; Baret, F. Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach. Eur. J. Agron. 2012, 37, 1-10.
    • (2012) Eur. J. Agron , vol.37 , pp. 1-10
    • Casa, R.1    Varella, H.2    Buis, S.3    Guérif, M.4    De-Solan, B.5    Baret, F.6
  • 21
    • 84971647132 scopus 로고    scopus 로고
    • 2012 Census of Agriculture. (accessed on 15 March)
    • USDA-NASS. NASS-National Agricultural Statistics Servies. 2012 Census of Agriculture. Available online: http://www.agcensus.usda.gov/Publications/(accessed on 15 March 2016).
    • (2016) NASS-National Agricultural Statistics Servies
  • 22
    • 79960831514 scopus 로고    scopus 로고
    • Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program
    • Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341-358.
    • (2011) Geocarto Int , vol.26 , pp. 341-358
    • Boryan, C.1    Yang, Z.2    Mueller, R.3    Craig, M.4
  • 24
    • 84971629692 scopus 로고    scopus 로고
    • (accessed on 17 March)
    • USGS. U.S. Geographic Survey-EarthExplore. Available online: http://earthexplorer.usgs.gov/(accessed on 17 March 2016).
    • (2016) U.S. Geographic Survey-EarthExplore
  • 25
    • 84875117682 scopus 로고    scopus 로고
    • Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
    • Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meterol. 2013, 173, 74-84.
    • (2013) Agric. For. Meterol , vol.173 , pp. 74-84
    • Bolton, D.K.1    Friedl, M.A.2
  • 26
    • 0027007342 scopus 로고
    • Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR
    • Rasmussen, M.S. Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR. Int. J. Remote Sens. 1992, 13, 3431-3442.
    • (1992) Int. J. Remote Sens , vol.13 , pp. 3431-3442
    • Rasmussen, M.S.1
  • 27
    • 78651435852 scopus 로고    scopus 로고
    • Crop yield forecasting on the Canadian prairies using MODIS NDVI data
    • Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric. For. Meterol. 2011, 151, 385-393.
    • (2011) Agric. For. Meterol , vol.151 , pp. 385-393
    • Mkhabela, M.S.1    Bullock, P.2    Raj, S.3    Wang, S.4    Yang, Y.5
  • 28
    • 84888050432 scopus 로고    scopus 로고
    • An assessment of pre-and within-season remotely sensed variabels for forecasting corn and soybean yields in the United States
    • Johnson, D.M. An assessment of pre-and within-season remotely sensed variabels for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116-128.
    • (2014) Remote Sens. Environ , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 29
    • 84925399448 scopus 로고    scopus 로고
    • Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape
    • Chipanshi, A.; Zhang, Y.; Kouadio, L.; Newlands, N.; Davidson, A.; Hill, H.; Warren, R.; Qian, B.; Daneshfar, B.; Bedard, F.; et al. Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric. For. Meteorol. 2015, 206, 137-150.
    • (2015) Agric. For. Meteorol , vol.206 , pp. 137-150
    • Chipanshi, A.1    Zhang, Y.2    Kouadio, L.3    Newlands, N.4    Davidson, A.5    Hill, H.6    Warren, R.7    Qian, B.8    Daneshfar, B.9    Bedard, F.10
  • 30
    • 0025589465 scopus 로고
    • Calculating the vegetation index faster
    • Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71-73.
    • (1990) Remote Sens. Environ , vol.34 , pp. 71-73
    • Crippen, R.E.1
  • 31
    • 0035031849 scopus 로고    scopus 로고
    • Comparing prediction power and stability of broad-band and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density
    • Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broad-band and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156-172.
    • (2001) Remote Sens. Environ , vol.76 , pp. 156-172
    • Broge, N.H.1    Leblanc, E.2
  • 33
    • 83455195642 scopus 로고    scopus 로고
    • Object-based cloud and cloud shadow detection in Landsat imagery
    • Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83-94.
    • (2012) Remote Sens. Environ , vol.118 , pp. 83-94
    • Zhu, Z.1    Woodcock, C.E.2
  • 36
    • 80051785268 scopus 로고    scopus 로고
    • Iowa State Univ. Extension Publication #PMR-1009 (accessed on 15 March 2016)
    • Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development. Iowa State Univ. Extension Publication #PMR-1009. 2011. Available online: https://store.extension.iastate.edu/Product/Corn-Growth-and-Development (accessed on 15 March 2016).
    • (2011) Corn Growth and Development
    • Abendroth, L.J.1    Elmore, R.W.2    Boyer, M.J.3    Marlay, S.K.4
  • 39
    • 84936916896 scopus 로고
    • Robust loacally weighted regression and smoothing satterplots
    • Cleveland, W.S. Robust loacally weighted regression and smoothing satterplots. J. Am. Stat. Assoc. 1979, 74, 829-836.
    • (1979) J. Am. Stat. Assoc , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 40
    • 79957630538 scopus 로고    scopus 로고
    • Detecting spatiotemporal changes of corn developmental stages in the US Corn Belt using MODIS WDRVI data
    • Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A. Detecting spatiotemporal changes of corn developmental stages in the US Corn Belt using MODIS WDRVI data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1926-1936.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 1926-1936
    • Sakamoto, T.1    Wardlow, B.D.2    Gitelson, A.A.3
  • 42
    • 84954123921 scopus 로고    scopus 로고
    • Corn yield response to reduced water use at different growth stages
    • Kebede, H.; Sui, R.X.; Fisher, D.K. Corn yield response to reduced water use at different growth stages. Agric. Sci. 2014, 5, 1305-1315.
    • (2014) Agric. Sci , vol.5 , pp. 1305-1315
    • Kebede, H.1    Sui, R.X.2    Fisher, D.K.3
  • 43
    • 84859639780 scopus 로고    scopus 로고
    • Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle
    • Ge, T.; Sui, F.; Bai, L. Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiol. Plant. 2012, 34, 1043-1053.
    • (2012) Acta Physiol. Plant , vol.34 , pp. 1043-1053
    • Ge, T.1    Sui, F.2    Bai, L.3
  • 45
    • 84855274522 scopus 로고    scopus 로고
    • Corny News Network, Purdue University. (accessed on 15 March)
    • Nielsen, R.L. Grain fill stages in corn. Corny News Network, Purdue University. Available online: http://www.agry.purdue.edu/ext/corn/news/timeless/grainfill.html (accessed on 15 March 2016).
    • (2016) Grain fill stages in corn
    • Nielsen, R.L.1
  • 47
    • 33751109257 scopus 로고    scopus 로고
    • In-Season Prediction of Corn Grain Yield Potential Using Normalized Difference Vegetation Index
    • Teal, R.K.; Tubana, B.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-Season Prediction of Corn Grain Yield Potential Using Normalized Difference Vegetation Index. Agron. J. 2006, 98, 1488-1494.
    • (2006) Agron. J , vol.98 , pp. 1488-1494
    • Teal, R.K.1    Tubana, B.2    Girma, K.3    Freeman, K.W.4    Arnall, D.B.5    Walsh, O.6    Raun, W.R.7
  • 48
    • 0031225104 scopus 로고    scopus 로고
    • Interlinkages of NOAA/AVHRR derived integrated NDVI to seasonal precipitation and transpiration in dryland tropics
    • Srivastave, S.K.; Jayaraman, V.; Nageswara, R.P.P.; Manikiam, B.; Chandrasekehar, G. Interlinkages of NOAA/AVHRR derived integrated NDVI to seasonal precipitation and transpiration in dryland tropics. Int. J. Remote Sens. 1997, 18, 2931-2952.
    • (1997) Int. J. Remote Sens , vol.18 , pp. 2931-2952
    • Srivastave, S.K.1    Jayaraman, V.2    Nageswara, R.P.P.3    Manikiam, B.4    Chandrasekehar, G.5
  • 49
    • 0037380004 scopus 로고    scopus 로고
    • An improved strategy for regression of biophysical variables and Landsat ETM+data
    • Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Turner, D.P. An improved strategy for regression of biophysical variables and Landsat ETM+data. Remote Sens. Environ. 2003, 84, 561-571.
    • (2003) Remote Sens. Environ , vol.84 , pp. 561-571
    • Cohen, W.B.1    Maiersperger, T.K.2    Gower, S.T.3    Turner, D.P.4
  • 51
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: Predicting Daily Landsat surface reflectance
    • Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting Daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207-2218.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.