메뉴 건너뛰기




Volumn 8, Issue 4, 2016, Pages

Operational drought monitoring in Kenya using MODIS NDVI time series

Author keywords

Drought Contingency Funds; Kenya; MODIS; NDMA; Uncertainty; Vegetation condition index; Whittaker smoother

Indexed keywords

AGGREGATES; CHAINS; FOOD SUPPLY; FORESTRY; IMAGE PROCESSING; IMAGE RECONSTRUCTION; PIXELS; RADIOMETERS; SATELLITE IMAGERY; VEGETATION;

EID: 84971629671     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8040267     Document Type: Article
Times cited : (135)

References (62)
  • 1
    • 0036700088 scopus 로고    scopus 로고
    • A review of twentieth-century drought indices used in the United States
    • Heim, R.R., Jr. A review of twentieth-century drought indices used in the United States. B Am. Meteorol. Soc. 2002, 83, 1149-1165.
    • (2002) B Am. Meteorol. Soc , vol.83 , pp. 1149-1165
    • Heim, R.R.1
  • 3
    • 84880649650 scopus 로고    scopus 로고
    • Drought as a natural hazard: Understanding the natural and social context
    • Wilhite, D., Ed.; CRC Press: Boca Raton, FL, USA
    • Wilhite, D.; Buchanan-Smith, M. Drought as a natural hazard: Understanding the natural and social context. In Drought and Water Crises: Science, Technology, and Management Issues; Wilhite, D., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 3-29.
    • (2005) Drought and Water Crises: Science, Technology, and Management Issues , pp. 3-29
    • Wilhite, D.1    Buchanan-Smith, M.2
  • 4
    • 34548149727 scopus 로고    scopus 로고
    • Documenting drought-related disasters: A global reassessment
    • Below, R.; Grover-Kopec, E.; Dilley, M. Documenting drought-related disasters: A global reassessment. J. Environ. Dev. 2007, 16, 328-344.
    • (2007) J. Environ. Dev , vol.16 , pp. 328-344
    • Below, R.1    Grover-Kopec, E.2    Dilley, M.3
  • 6
    • 77956191461 scopus 로고    scopus 로고
    • A review of drought concepts
    • Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202-216.
    • (2010) J. Hydrol , vol.391 , pp. 202-216
    • Mishra, A.K.1    Singh, V.P.2
  • 7
    • 35348947026 scopus 로고    scopus 로고
    • Earlier famine warning possible using remote sensing and models
    • Brown, M.; Funk, C.; Galu, U.; Choularton, R. Earlier famine warning possible using remote sensing and models. EOS 2007, 88, 381-398.
    • (2007) EOS , vol.88 , pp. 381-398
    • Brown, M.1    Funk, C.2    Galu, U.3    Choularton, R.4
  • 10
    • 84877678838 scopus 로고    scopus 로고
    • Using low resolution satellite imagery for yield prediction and yield anomaly detection
    • Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013, 5, 1704-1733.
    • (2013) Remote Sens , vol.5 , pp. 1704-1733
    • Rembold, F.1    Atzberger, C.2    Savin, I.3    Rojas, O.4
  • 12
    • 84971642623 scopus 로고    scopus 로고
    • Agricultural drought detection and monitoring using vegetation health methods
    • Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA
    • Kogan, F.; Guo, W. Agricultural drought detection and monitoring using vegetation health methods. In Remote Sensing of Water Resources, Disasters, and Urban Studies; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 339-348.
    • (2015) Remote Sensing of Water Resources, Disasters, and Urban Studies , pp. 339-348
    • Kogan, F.1    Guo, W.2
  • 14
    • 84971642755 scopus 로고    scopus 로고
    • Remote sensing of drought: Emergence of a satellite-based monitoring toolkit for the United States
    • Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA
    • Wardlow, B.; Anderson, M.; Tadesse, T.; Hain, C.; Crow, W.; Rodell, M. Remote sensing of drought: Emergence of a satellite-based monitoring toolkit for the United States. In Remote Sensing of Water Resources, Disasters, and Urban Studies; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 367-400.
    • (2015) Remote Sensing of Water Resources, Disasters, and Urban Studies , pp. 367-400
    • Wardlow, B.1    Anderson, M.2    Tadesse, T.3    Hain, C.4    Crow, W.5    Rodell, M.6
  • 15
    • 84979541367 scopus 로고    scopus 로고
    • Regional drought monitoring based on multisensor remote sensing
    • Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA
    • Rhee, J.; Im, J.; Park, S. Regional drought monitoring based on multisensor remote sensing. In Remote Sensing of Water Resources, Disasters, and Urban Studies; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 401-416.
    • (2015) Remote Sensing of Water Resources, Disasters, and Urban Studies , pp. 401-416
    • Rhee, J.1    Im, J.2    Park, S.3
  • 16
    • 84941985166 scopus 로고    scopus 로고
    • Drought monitoring and assessment: Remote sensing and modeling approaches for the Famine Early Warning Systems Network
    • Paron, P., Di Baldassarre, G., Shroder, J.F., Eds.; Elsevier: Boston, MA, USA
    • Senay, G.; Velpuri, N.; Bohms, S.; Budde, M.; Young, C.; Rowland, J.; Verdin, J. Drought monitoring and assessment: Remote sensing and modeling approaches for the Famine Early Warning Systems Network. In Hydro-Meteorological Hazards, Risks and Disasters; Paron, P., Di Baldassarre, G., Shroder, J.F., Eds.; Elsevier: Boston, MA, USA, 2015; pp. 233-262.
    • (2015) Hydro-Meteorological Hazards, Risks and Disasters , pp. 233-262
    • Senay, G.1    Velpuri, N.2    Bohms, S.3    Budde, M.4    Young, C.5    Rowland, J.6    Verdin, J.7
  • 17
    • 0011031684 scopus 로고    scopus 로고
    • An introduction to the drought monitor
    • Svoboda, M. An introduction to the drought monitor. Drought Network News 2000, 12, 80.
    • (2000) Drought Network News , vol.12 , pp. 80
    • Svoboda, M.1
  • 19
    • 84949658386 scopus 로고    scopus 로고
    • Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists
    • Vrieling, A.; Meroni, M.; Mude, A.; Chantarat, S.; Ummenhofer, C.; de Bie, K. Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists. Remote Sens. Environ. 2016, 174, 44-55.
    • (2016) Remote Sens. Environ , vol.174 , pp. 44-55
    • Vrieling, A.1    Meroni, M.2    Mude, A.3    Chantarat, S.4    Ummenhofer, C.5    de Bie, K.6
  • 20
    • 56349130249 scopus 로고    scopus 로고
    • The need for integration of drought monitoring tools for proactive food security management in sub-Saharan Africa
    • Tadesse, T.; Haile, M.; Senay, G.; Wardlow, B.D.; Knutson, C.L. The need for integration of drought monitoring tools for proactive food security management in sub-Saharan Africa. Nat. Resour. Forum 2008, 32, 265-279.
    • (2008) Nat. Resour. Forum , vol.32 , pp. 265-279
    • Tadesse, T.1    Haile, M.2    Senay, G.3    Wardlow, B.D.4    Knutson, C.L.5
  • 21
    • 77949899286 scopus 로고    scopus 로고
    • The vegetation outlook (VegOut): A new method for predicting vegetation seasonal greenness
    • Tadesse, T.; Wardlow, B.D.; Hayes, M.J.; Svoboda, M.D.; Brown, J.F. The vegetation outlook (VegOut): A new method for predicting vegetation seasonal greenness. GISci. Remote Sens. 2010, 47, 25-52.
    • (2010) GISci. Remote Sens , vol.47 , pp. 25-52
    • Tadesse, T.1    Wardlow, B.D.2    Hayes, M.J.3    Svoboda, M.D.4    Brown, J.F.5
  • 23
    • 78650922411 scopus 로고    scopus 로고
    • Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery
    • Rojas, O.; Vrieling, A.; Rembold, F. Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ. 2011, 115, 343-352.
    • (2011) Remote Sens. Environ , vol.115 , pp. 343-352
    • Rojas, O.1    Vrieling, A.2    Rembold, F.3
  • 24
    • 56949107790 scopus 로고    scopus 로고
    • Noise reduction of NDVI time series: An empirical comparison of selected techniques
    • Hird, J.; McDermid, G. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ. 2009, 113, 248-258.
    • (2009) Remote Sens. Environ , vol.113 , pp. 248-258
    • Hird, J.1    McDermid, G.2
  • 25
    • 79960068688 scopus 로고    scopus 로고
    • Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements
    • Atzberger, C.; Eilers, P.H.C. Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements. Int. J. Remote Sens. 2011, 32, 3689-3709.
    • (2011) Int. J. Remote Sens , vol.32 , pp. 3689-3709
    • Atzberger, C.1    Eilers, P.H.C.2
  • 26
    • 84860508869 scopus 로고    scopus 로고
    • Intercomparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology
    • Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Intercomparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400-417.
    • (2012) Remote Sens. Environ , vol.123 , pp. 400-417
    • Atkinson, P.M.1    Jeganathan, C.2    Dash, J.3    Atzberger, C.4
  • 27
    • 84896958551 scopus 로고    scopus 로고
    • Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe River basin, China
    • Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S.; Wang, H. Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe River basin, China. Remote Sens. 2014, 6, 2024-2049.
    • (2014) Remote Sens , vol.6 , pp. 2024-2049
    • Geng, L.1    Ma, M.2    Wang, X.3    Yu, W.4    Jia, S.5    Wang, H.6
  • 28
    • 84928668217 scopus 로고    scopus 로고
    • An approach for evaluating the impact of gaps and measurement errors on satellite land surface phenology algorithms: Application to 20 year NOAA AVHRR data over Canada
    • Kandasamy, S.; Fernandes, R. An approach for evaluating the impact of gaps and measurement errors on satellite land surface phenology algorithms: Application to 20 year NOAA AVHRR data over Canada. Remote Sens. Environ. 2015, 164, 114-129.
    • (2015) Remote Sens. Environ , vol.164 , pp. 114-129
    • Kandasamy, S.1    Fernandes, R.2
  • 29
    • 84952019779 scopus 로고    scopus 로고
    • An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data
    • Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens. Environ. 2016, 174, 258-265.
    • (2016) Remote Sens. Environ , vol.174 , pp. 258-265
    • Shao, Y.1    Lunetta, R.S.2    Wheeler, B.3    Iiames, J.S.4    Campbell, J.B.5
  • 30
    • 0242669997 scopus 로고    scopus 로고
    • A perfect smoother
    • Eilers, P.H.C. A perfect smoother. Anal. Chem. 2003, 75, 3631-3636.
    • (2003) Anal. Chem , vol.75 , pp. 3631-3636
    • Eilers, P.H.C.1
  • 32
    • 80051901658 scopus 로고    scopus 로고
    • A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America
    • Atzberger, C.; Eilers, P.H.C. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America. Int. J. Digit. Earth 2011, 4, 365-386.
    • (2011) Int. J. Digit. Earth , vol.4 , pp. 365-386
    • Atzberger, C.1    Eilers, P.H.C.2
  • 33
    • 84893361715 scopus 로고    scopus 로고
    • Phenological metrics derived over the European continent from NDVI3g data and MODIS time series
    • Atzberger, C.; Klisch, A.; Mattiuzzi, M.; Vuolo, F. Phenological metrics derived over the European continent from NDVI3g data and MODIS time series. Remote Sens. 2014, 6, 257-284.
    • (2014) Remote Sens , vol.6 , pp. 257-284
    • Atzberger, C.1    Klisch, A.2    Mattiuzzi, M.3    Vuolo, F.4
  • 35
    • 84915739576 scopus 로고    scopus 로고
    • Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present
    • Tarnavsky, E.; Grimes, D.; Maidment, R.; Black, E.; Allan, R.P.; Stringer, M. Extension of the TAMSAT satellite-based rainfall monitoring over Africa and from 1983 to present. J. Appl. Meteorol. 2014, 53, 2805-2822.
    • (2014) J. Appl. Meteorol , vol.53 , pp. 2805-2822
    • Tarnavsky, E.1    Grimes, D.2    Maidment, R.3    Black, E.4    Allan, R.P.5    Stringer, M.6
  • 36
    • 67949106575 scopus 로고    scopus 로고
    • Biophysical remote sensing and climate data in famine early warning systems
    • Brown, M. Biophysical remote sensing and climate data in famine early warning systems. Geogr. Compass 2009, 3, 1381-1407.
    • (2009) Geogr. Compass , vol.3 , pp. 1381-1407
    • Brown, M.1
  • 37
    • 84897030209 scopus 로고    scopus 로고
    • A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa
    • Meroni, M.; Verstraete, M.M.; Rembold, F.; Urbano, F.; Kayitakire, F. A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa. Int. J. Remote Sens. 2014, 35, 2472-2492.
    • (2014) Int. J. Remote Sens , vol.35 , pp. 2472-2492
    • Meroni, M.1    Verstraete, M.M.2    Rembold, F.3    Urbano, F.4    Kayitakire, F.5
  • 38
    • 84971646207 scopus 로고    scopus 로고
    • World Resources Institute (WRI). (accessed on 26 February)
    • Kenya GIS Data. World Resources Institute (WRI). Available online: http://www.wri.org/resources/data-sets/kenya-gis-data (accessed on 26 February 2016).
    • (2016)
  • 39
    • 84971646212 scopus 로고    scopus 로고
    • (accessed on 26 February)
    • TAMSAT (Tropical Applications of Meteorology Using SATellite Data and Ground-Based Observations). University of Reading. Available online: http://www.met.reading.ac.uk/~tamsat/data/(accessed on 26 February 2016).
    • (2016) University of Reading
  • 40
    • 84866784112 scopus 로고    scopus 로고
    • Version 2.00, May 2010 (Collection 5). Vegetation Index and Phenology Lab, The University of Arizona. (accessed on 9 March 2016)
    • Solano, R.; Didan, K.; Jacobson, A.; Huete, A. MODIS Vegetation Index User's Guide (MOD13 Series), Version 2.00, May 2010 (Collection 5). Vegetation Index and Phenology Lab, The University of Arizona. 2010. Available online: http://www.ctahr.hawaii.edu/grem/modis-ug.pdf (accessed on 9 March 2016).
    • (2010) MODIS Vegetation Index User's Guide (MOD13 Series)
    • Solano, R.1    Didan, K.2    Jacobson, A.3    Huete, A.4
  • 42
    • 84869231447 scopus 로고    scopus 로고
    • Exploiting the classification performance of support vector machines with multi-temporal Moderate-Resolution Imaging Spectroradiometer (MODIS) data in areas of agreement and disagreement of existing land cover products
    • Vuolo, F.; Atzberger, C. Exploiting the classification performance of support vector machines with multi-temporal Moderate-Resolution Imaging Spectroradiometer (MODIS) data in areas of agreement and disagreement of existing land cover products. Remote Sens. 2012, 4, 3143-3167.
    • (2012) Remote Sens , vol.4 , pp. 3143-3167
    • Vuolo, F.1    Atzberger, C.2
  • 43
    • 84920103576 scopus 로고    scopus 로고
    • A Kalman filter-based method to generate continuous time series of medium-resolution NDVI images
    • Sedano, F.; Kempeneers, P.; Hurtt, G. A Kalman filter-based method to generate continuous time series of medium-resolution NDVI images. Remote Sens. 2014, 6, 12381-12408.
    • (2014) Remote Sens , vol.6 , pp. 12381-12408
    • Sedano, F.1    Kempeneers, P.2    Hurtt, G.3
  • 44
    • 31344451662 scopus 로고    scopus 로고
    • Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI
    • Beck, P.S.A.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321-334.
    • (2006) Remote Sens. Environ , vol.100 , pp. 321-334
    • Beck, P.S.A.1    Atzberger, C.2    Høgda, K.A.3    Johansen, B.4    Skidmore, A.K.5
  • 45
    • 56349094812 scopus 로고    scopus 로고
    • Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS
    • Brown, M.; Lary, D.; Vrieling, A.; Stathakis, D.; Mussa, H. Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS. Int. J. Remote Sens. 2008, 29, 7141-7158.
    • (2008) Int. J. Remote Sens , vol.29 , pp. 7141-7158
    • Brown, M.1    Lary, D.2    Vrieling, A.3    Stathakis, D.4    Mussa, H.5
  • 46
    • 33845883788 scopus 로고    scopus 로고
    • A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data
    • Bradley, B.; Jacob, R.; Hermance, W. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ. 2007, 106, 137-145.
    • (2007) Remote Sens. Environ , vol.106 , pp. 137-145
    • Bradley, B.1    Jacob, R.2    Hermance, W.3
  • 47
    • 2942739366 scopus 로고    scopus 로고
    • A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter
    • Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332-344.
    • (2004) Remote Sens. Environ , vol.91 , pp. 332-344
    • Chen, J.1    Jönsson, P.2    Tamura, M.3    Gu, Z.4
  • 48
    • 0026613587 scopus 로고
    • The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series
    • Viovy, N.; Arino, O.; Belward, A. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series. Int. J. Remote Sens. 1992, 13, 1585-1590.
    • (1992) Int. J. Remote Sens , vol.13 , pp. 1585-1590
    • Viovy, N.1    Arino, O.2    Belward, A.3
  • 49
    • 0042266716 scopus 로고    scopus 로고
    • AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity: Calibration and validation
    • Kogan, F.; Gitelson, A.; Zakarin, E.; Spivak, L.; Lebed, L. AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity: Calibration and validation. Photogramm. Eng. Remote Sens. 2003, 69, 809-906.
    • (2003) Photogramm. Eng. Remote Sens , vol.69 , pp. 809-906
    • Kogan, F.1    Gitelson, A.2    Zakarin, E.3    Spivak, L.4    Lebed, L.5
  • 51
    • 84971646310 scopus 로고    scopus 로고
    • BOKU. (accessed on 26 February)
    • Web-tools for Vegetation Anomaly Analysis. BOKU. Available online: http://ivfl-geomap.boku.ac.at/demo_WG/kenya/,http://ivfl-info.boku.ac.at/index.php/eo-data-processing/data-analytics (accessed on 26 February 2016).
    • (2016) Web-tools for Vegetation Anomaly Analysis
  • 55
    • 84930407412 scopus 로고    scopus 로고
    • Technical Report, Kenya Food Security Steering Group (KFSSG) (accessed on 9 March 2016)
    • KFSSG. Kenya Long Rains Assessment Report 2009. Technical Report, Kenya Food Security Steering Group (KFSSG). 2009. Available online: http://documents.wfp.org/stellent/groups/public/documents/ena/wfp208056.pdf?iframe (accessed on 9 March 2016).
    • (2009) Kenya Long Rains Assessment Report 2009
  • 56
    • 84930407412 scopus 로고    scopus 로고
    • Technical Report, Kenya Food Security Steering Group (KFSSG) (accessed on 9 March 2016)
    • KFSSG. Kenya Long Rains Assessment Report 2011. Technical Report, Kenya Food Security Steering Group (KFSSG). 2011. Available online: http://documents.wfp.org/stellent/groups/public/documents/ena/wfp240180.pdf (accessed on 9 March 2016).
    • (2011) Kenya Long Rains Assessment Report 2011
  • 57
    • 84971592542 scopus 로고    scopus 로고
    • Technical Report, Kenya Food Security Steering Group (KFSSG) (accessed on 9 March 2016)
    • KFSSG. Kenya Long Rains Assessment Report 2014. Technical Report, Kenya Food Security Steering Group (KFSSG). 2014. Available online: http://www.ipcinfo.org/fileadmin/user_upload/ipcinfo/docs/2014%20Kenya%20LRA%20National%20Report.pdf (accessed on 9 March 2016).
    • (2014) Kenya Long Rains Assessment Report 2014
  • 58
    • 84930407412 scopus 로고    scopus 로고
    • Technical Report, Kenya Food Security Steering Group (KFSSG) (accessed on 9 March 2016)
    • KFSSG. Kenya Long Rains Assessment Report 2006. Technical Report, Kenya Food Security Steering Group (KFSSG). 2006. Available online: http://reliefweb.int/sites/reliefweb.int/files/resources/F63B1A92E605B2E4C1257230004B666F-govt-ken-12sep.pdf (accessed on 9 March 2016).
    • (2006) Kenya Long Rains Assessment Report 2006
  • 59
    • 84971647138 scopus 로고    scopus 로고
    • Technical Report, Kenya Food Security Steering Group (KFSSG) (accessed on 9 March 2016)
    • KFSSG. Kenya Long Rains Assessment Report 2010. Technical Report, Kenya Food Security Steering Group (KFSSG). 2010. Available online: http://www.fao.org/fileadmin/user_upload/drought/docs/Kenya_2010_LRA%20Report.pdf (accessed on 9 March 2016).
    • (2010) Kenya Long Rains Assessment Report 2010
  • 60
    • 84971646166 scopus 로고    scopus 로고
    • Technical Report, Kenya Food Security Steering Group (KFSSG) (accessed on 9 March 2016)
    • KFSSG. Kenya Long Rains Assessment Report 2013. Technical Report, Kenya Food Security Steering Group (KFSSG). 2013. Available online: https://www.humanitarianresponse.info/system/files/documents/files/LRA%202013_National%20Report_Final.pdf (accessed on 9 March 2016).
    • (2013) Kenya Long Rains Assessment Report 2013
  • 61
    • 84930407412 scopus 로고    scopus 로고
    • Technical Report, Kenya Food Security Steering Group (KFSSG) (accessed on 9 March 2016)
    • KFSSG. Kenya Short Rains Assessment Report 2005. Technical Report, Kenya Food Security Steering Group (KFSSG). 2006. Available online: http://documents.wfp.org/stellent/groups/public/documents/ena/wfp087348.pdf?iframe (accessed on 9 March 2016).
    • (2006) Kenya Short Rains Assessment Report 2005
  • 62
    • 84930407412 scopus 로고    scopus 로고
    • Technical Report, Kenya Food Security Steering Group (KFSSG) (accessed on 9 March 2016)
    • KFSSG. Kenya Short Rains Assessment Report 2010. Technical Report, Kenya Food Security Steering Group (KFSSG). 2011. Available online: http://documents.wfp.org/stellent/groups/public/documents/ena/wfp241326.pdf?iframe (accessed on 9 March 2016).
    • (2011) Kenya Short Rains Assessment Report 2010


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.