메뉴 건너뛰기




Volumn 8, Issue 5, 2016, Pages

A 30 m resolution surfacewater mask including estimation of positional and thematic differences using landsat 8, SRTM and OPenStreetMap: A case study in the Murray-Darling basin, Australia

Author keywords

Canny edge filter; CART; EartH2Observe; HAND; Landsat 8; MNDWI; OpenStreetMap; Otsu thresholding; Rivers; SRTM; Water mask

Indexed keywords

COMPLEX NETWORKS; DRAINAGE; RIVERS; SATELLITE IMAGERY; TRACKING RADAR; WATER RESOURCES;

EID: 84971468867     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8050386     Document Type: Article
Times cited : (159)

References (57)
  • 4
    • 84939473125 scopus 로고    scopus 로고
    • Global hydrology 2015: State, trends, and directions
    • Bierkens, M.F.P. Global hydrology 2015: State, trends, and directions. Water Resour. Res. 2015, 51, 4923-4947.
    • (2015) Water Resour. Res , vol.51 , pp. 4923-4947
    • Bierkens, M.F.P.1
  • 5
    • 0030429663 scopus 로고    scopus 로고
    • NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257-266.
    • (1996) Remote Sens. Environ , vol.58 , pp. 257-266
    • Gao, B.C.1
  • 6
    • 0030136491 scopus 로고    scopus 로고
    • The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features
    • McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425-1432.
    • (1996) Int. J. Remote Sens , vol.17 , pp. 1425-1432
    • McFeeters, S.K.1
  • 7
    • 33747136902 scopus 로고    scopus 로고
    • Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
    • Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025-3033.
    • (2006) Int. J. Remote Sens , vol.27 , pp. 3025-3033
    • Xu, H.1
  • 8
    • 83455195642 scopus 로고    scopus 로고
    • Object-based cloud and cloud shadow detection in Landsat imagery
    • Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83-94.
    • (2012) Remote Sens. Environ , vol.118 , pp. 83-94
    • Zhu, Z.1    Woodcock, C.E.2
  • 9
    • 84903937476 scopus 로고    scopus 로고
    • Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change
    • Zhu, Z.;Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217-234.
    • (2014) Remote Sens. Environ , vol.152 , pp. 217-234
    • Zhu, Z.1    Woodcock, C.E.2
  • 10
  • 14
    • 72449164909 scopus 로고    scopus 로고
    • Analysis of dynamic thresholds for the normalized difference water index
    • Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307-1317.
    • (2009) Photogramm. Eng. Remote Sens , vol.75 , pp. 1307-1317
    • Ji, L.1    Zhang, L.2    Wylie, B.3
  • 15
    • 84901504726 scopus 로고    scopus 로고
    • A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI
    • Li, W.; Du, Z.; Ling, F.; Zhou, D.;Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530-5549.
    • (2013) Remote Sens , vol.5 , pp. 5530-5549
    • Li, W.1    Du, Z.2    Ling, F.3    Zhou, D.4    Wang, H.5    Gui, Y.6    Sun, B.7    Zhang, X.8
  • 18
    • 42049104077 scopus 로고    scopus 로고
    • New global hydrography derived from spaceborne elevation data
    • Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. EOS 2008, 89, 93-94.
    • (2008) EOS , vol.89 , pp. 93-94
    • Lehner, B.1    Verdin, K.2    Jarvis, A.3
  • 19
    • 0030619636 scopus 로고    scopus 로고
    • A new method for the determination of flow directions and upslope areas in grid digital elevation models
    • Tarboton, D.G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res. 1997, 33, 309.
    • (1997) Water Resour. Res , vol.33 , pp. 309
    • Tarboton, D.G.1
  • 22
    • 84904382622 scopus 로고    scopus 로고
    • Investigation on the use of geomorphic approaches for the delineation of flood prone areas
    • Manfreda, S.; Nardi, F.; Samela, C.; Grimaldi, S.; Taramasso, A.C.; Roth, G.; Sole, A. Investigation on the use of geomorphic approaches for the delineation of flood prone areas. J. Hydrol. 2014, 517, 863-876.
    • (2014) J. Hydrol , vol.517 , pp. 863-876
    • Manfreda, S.1    Nardi, F.2    Samela, C.3    Grimaldi, S.4    Taramasso, A.C.5    Roth, G.6    Sole, A.7
  • 23
    • 84894627139 scopus 로고    scopus 로고
    • Remotely sensed monitoring of small reservoir dynamics: A Bayesian approach
    • Eilander, D.; Annor, F.O.; Iannini, L.; van de Giesen, N. Remotely sensed monitoring of small reservoir dynamics: A Bayesian approach. Remote Sens. 2014, 6, 1191-1210.
    • (2014) Remote Sens , vol.6 , pp. 1191-1210
    • Eilander, D.1    Annor, F.O.2    Iannini, L.3    van de Giesen, N.4
  • 24
    • 77954897618 scopus 로고    scopus 로고
    • How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets
    • Haklay, M. How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ. Plan. B Plan. Des. 2010, 37, 682-703.
    • (2010) Environ. Plan. B Plan. Des , vol.37 , pp. 682-703
    • Haklay, M.1
  • 25
    • 84971493558 scopus 로고    scopus 로고
    • (accessed on 24 November 2015)
    • OpenStreetMap Taginfo. Available online: http://taginfo.openstreetmap.org/tags (accessed on 24 November 2015).
    • OpenStreetMap Taginfo
  • 26
    • 84904871744 scopus 로고    scopus 로고
    • Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model
    • Schellekens, J.; Brolsma, R.J.; Dahm, R.J.; Donchyts, G.V.;Winsemius, H.C. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model. Environ. Model. Softw. 2014, 61, 98-105.
    • (2014) Environ. Model. Softw , vol.61 , pp. 98-105
    • Schellekens, J.1    Brolsma, R.J.2    Dahm, R.J.3    Donchyts, G.V.4    Winsemius, H.C.5
  • 28
    • 77958535797 scopus 로고    scopus 로고
    • Quality Assessment of the French OpenStreetMap Dataset
    • Girres, J.F.; Touya, G. Quality Assessment of the French OpenStreetMap Dataset. Trans. GIS 2010, 14, 435-459.
    • (2010) Trans. GIS , vol.14 , pp. 435-459
    • Girres, J.F.1    Touya, G.2
  • 29
    • 0030753082 scopus 로고    scopus 로고
    • A simple positional accuracy measure for linear features
    • Goodchild, M.F.; Hunter, G.J. A simple positional accuracy measure for linear features. Int. J. Geogr. Inf. Sci. 1997, 11, 299-306.
    • (1997) Int. J. Geogr. Inf. Sci , vol.11 , pp. 299-306
    • Goodchild, M.F.1    Hunter, G.J.2
  • 30
    • 84919356325 scopus 로고    scopus 로고
    • A comprehensive framework for intrinsic OpenStreetMap quality analysis
    • Barron, C.; Neis, P.; Zipf, A. A comprehensive framework for intrinsic OpenStreetMap quality analysis. Trans. GIS 2014, 18, 877-895.
    • (2014) Trans. GIS , vol.18 , pp. 877-895
    • Barron, C.1    Neis, P.2    Zipf, A.3
  • 31
    • 0347850183 scopus 로고    scopus 로고
    • (accessed on 10 April 2016)
    • International Organization for Standardization: ISO 19113:2002: Geographic Information-Quality Principles. Available online: http://www.iso.org/iso/catalogue_detail.htm?csnumber=26018 (accessed on 10 April 2016).
    • Geographic Information-Quality Principles
  • 32
    • 84974632610 scopus 로고    scopus 로고
    • 2nd ed.; Australia. (accessed on 5 April 2016)
    • Crossman, S.; Li, O. Surface Hydrology Lines (Regional), 2nd ed.; Australia. Available online: http://www.ga.gov.au/metadata-gateway/metadata/record/83130 (accessed on 5 April 2016).
    • Surface Hydrology Lines (Regional)
    • Crossman, S.1    Li, O.2
  • 34
    • 85019896630 scopus 로고    scopus 로고
    • Digital Elevation Model (DEM) of Australia Derived from LiDAR 5 Metre Grid
    • (accessed on 5 April 2016)
    • Digital Elevation Model (DEM) of Australia Derived from LiDAR 5 Metre Grid. Geoscience Australia, Canberra. Available online: http://dx.doi.org/10.4225/25/5652419862E23 (accessed on 5 April 2016).
    • Geoscience Australia, Canberra
  • 36
    • 0005102333 scopus 로고    scopus 로고
    • (accessed on 24 November 2015)
    • NASA Shuttle Radar Topography Mission. Available online: http://www2.jpl.nasa.gov/srtm/(accessed on 24 November 2015).
    • NASA Shuttle Radar Topography Mission
  • 37
    • 84883193323 scopus 로고    scopus 로고
    • (accessed on 1 January 2016)
    • Murray-Darling Basin Authority. Available online: http://www.mdba.gov.au/about-basin (accessed on 1 January 2016).
    • Murray-Darling Basin Authority
  • 38
    • 84971411848 scopus 로고    scopus 로고
    • (accessed on 5 April 2016)
    • Natural Earth Map Dataset. Available online: http://www.naturalearthdata.com/(accessed on 5 April 2016).
    • Natural Earth Map Dataset
  • 39
    • 84971376054 scopus 로고    scopus 로고
    • (accessed on 24 November 2015)
    • OpenStreetMap Planet File. Available online: http://planet.osm.org/(accessed on 24 November 2015).
    • OpenStreetMap Planet File
  • 40
    • 84880038912 scopus 로고    scopus 로고
    • Global river hydrography and network routing: Baseline data and new approaches to study the world's large river systems
    • Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world's large river systems. Hydrol. Process. 2013, 27, 2171-2186.
    • (2013) Hydrol. Process , vol.27 , pp. 2171-2186
    • Lehner, B.1    Grill, G.2
  • 42
    • 0021644354 scopus 로고
    • The extraction of drainage networks from digital elevation data
    • O'Callaghan, J.; Mark, D. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 323-344.
    • (1984) Comput. Vis. Graph. Image Process , vol.28 , pp. 323-344
    • O'Callaghan, J.1    Mark, D.2
  • 43
    • 72549104394 scopus 로고    scopus 로고
    • A software framework for construction of process-based stochastic spatio-temporal models and data assimilation
    • Karssenberg, D.; Schmitz, O. A software framework for construction of process-based stochastic spatio-temporal models and data assimilation. Environ. Model. Softw. 2010, 25, 489-502.
    • (2010) Environ. Model. Softw , vol.25 , pp. 489-502
    • Karssenberg, D.1    Schmitz, O.2
  • 44
    • 84971493552 scopus 로고    scopus 로고
    • (accessed on 1 May 2016)
    • PCRaster Web Page. Available online: http://pcraster.geo.uu.nl/(accessed on 1 May 2016).
    • PCRaster Web Page
  • 45
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127-150.
    • (1979) Remote Sens. Environ , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 48
    • 84876937664 scopus 로고    scopus 로고
    • (accessed on 28 April 2016)
    • Gorelick, N. Google Earth Engine. Available online: http://adsabs.harvard.edu/abs/2012AGUFM.U31A.04G (accessed on 28 April 2016).
    • Google Earth Engine
    • Gorelick, N.1
  • 49
    • 84971431337 scopus 로고    scopus 로고
    • (accessed on 1 May 2016)
    • Google Fusion Table Web Page. Available online: http://tables.googlelabs.com (accessed on 1 May 2016).
    • Google Fusion Table Web Page
  • 51
    • 84971442409 scopus 로고    scopus 로고
    • (accessed on 28 March 2016)
    • Fiona GitHubWeb Page. Available online: https://github.com/Toblerity/Fiona (accessed on 28 March 2016).
    • Fiona GitHubWeb Page
  • 52
    • 84971376488 scopus 로고    scopus 로고
    • (accessed on 1 January 2016)
    • Shapely GitHub Web Page. Available online: https://github.com/Toblerity/Shapely (accessed on 1 January 2016).
    • Shapely GitHub Web Page
  • 53
    • 84971443134 scopus 로고    scopus 로고
    • (accessed on 1 January 2016)
    • Ee-Runner GitHub Web Page. Available online: https://github.com/gena/ee-runner (accessed on 1 January 2016).
    • Ee-Runner GitHub Web Page
  • 54
    • 84971470459 scopus 로고    scopus 로고
    • (accessed on 1 May 2016)
    • Supplementary GitHub RepositoryWeb Page. Available online: http://github.com/gena/paper-osm-2015 (accessed on 1 May 2016).
    • Supplementary GitHub RepositoryWeb Page
  • 55
  • 57
    • 84971380210 scopus 로고    scopus 로고
    • (accessed on 1 May 2016)
    • Supplementary Project Web Page. Available online: http://osm-water.appspot.com (accessed on 1 May 2016).
    • Supplementary Project Web Page


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.